MHB Cumulative Distribution function in terms of Error function

TheFallen018
Messages
52
Reaction score
0
Hey guys,

I've got this problem I've been trying to solve, but it makes little sense to me. I've tried a few things, but I feel like with each method, I've made no progress, and I haven't been able to make the problem make any more sense to me by trying those things.

Here's the question:

The error function is \begin{align*}\frac{1}{\sqrt{\pi}}\int_{-x}^{x}e^{-t^2} dt\end{align*}
The cumulative distribution function for $x\geq0$ is \begin{align*}\frac{1}{2}+\frac{1}{\sqrt{2\pi}}\int_{0}^{x}e^-\frac{t^2}{2} dt\end{align*}

By making a suitable substitution, find a formula for the cumulative distribution function in terms of the error function when $x\geq0$

The previous question had to do with taking the derivative with respect to x of the error function, so I was thinking I could try integrating that again and use parts of that, but that obviously didn't work. I've lost track of where my thoughts are, so I was hoping someone would be able to point me in the right direction.

Thank you :)
 
Last edited:
Physics news on Phys.org
Hi TheFallen018,

Here are a few hints:
  1. Notice that the error function is an even function. Use this fact to find an equivalent integral form for the error function.
  2. Make a substitution in your cumulative distribution function so that $e^{-\frac{t^{2}}{2}}$ becomes $e^{-t^{2}}$ to match the form of the exponential in the error function.
  3. Do a little algebra to combine your answers from Steps 1 & 2 to get an expression for the distribution in terms of the error function.

Let me know if anything requires further clarification.
 
Last edited:
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top