Cut 16" Pizza into 3 Equal Pieces Using Calculus

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Cutting
Click For Summary
SUMMARY

The discussion focuses on how to cut a 16-inch diameter pizza into three equal pieces using calculus. The solution involves making two parallel cuts along chords of the circle, with the cuts defined by the equation $$\int_0^c \sqrt{r^2-x^2}\,dx=\frac{\pi r^2}{12}$$. By applying trigonometric substitutions and numeric root-finding techniques, the value of $$c$$ is determined to be approximately 2.119 inches from the center, resulting in the cuts being made along the lines $$x \approx \pm 2.119$$.

PREREQUISITES
  • Understanding of calculus concepts, particularly definite integrals
  • Familiarity with trigonometric functions and identities
  • Knowledge of numeric root-finding techniques
  • Basic geometry of circles and sectors
NEXT STEPS
  • Study the application of definite integrals in geometric problems
  • Learn about trigonometric substitutions in calculus
  • Explore numeric methods for solving equations, such as the Newton-Raphson method
  • Investigate other geometric problems involving calculus, such as area and volume calculations
USEFUL FOR

Mathematics students, calculus instructors, and anyone interested in applying calculus to solve geometric problems.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

How do you cut a 16 inch diameter pizza into 3 equal pieces using calculus?


It's a long one and someone told me 3pi/2 is the answer...I really need to know how to get that. Are there any similar problems on the internet I can follow to this one also?

I have posted a link there to this thread so the OP can view my work.
 
Physics news on Phys.org
Hello Topher L,

One way to cut the pizza into 3 equal pieces is to make 3 radial cuts to divide the pizza into 3 equal sectors each subtending an angle of $$\frac{2\pi}{3}$$. We simply divide the complete circle's angle of $2\pi$ by 3.

However, since you state that calculus is to be used, I suspect we are to make 2 parallel cuts along chords of the circle. So, if we orient the circle with its center at the origin of our $xy$-coordinate axes, we may cut along the lines $x=\pm c$. To find the value of $c$, we may state (where $r$ is the radius of the circle):

$$\int_0^c \sqrt{r^2-x^2}\,dx=\frac{\pi r^2}{12}$$

If we let:

$$x=r\sin(\theta)\,\therefore\,dx=r\cos(\theta)$$

We obtain:

$$r^2\int_0^{\sin^{-1}\left(\frac{c}{r} \right)} \cos^2(\theta)\,d\theta=\frac{\pi r^2}{12}$$

Using a double-angle identity for cosine, we may write:

$$\frac{r^2}{4}\int_0^{\sin^{-1}\left(\frac{c}{r} \right)} 1+\cos(2\theta)\,2\,d\theta=\frac{\pi r^2}{12}$$

Let $u=2\theta\,\therefore\,du=2\,d\theta$ and we have:

$$\frac{r^2}{4}\int_0^{2\sin^{-1}\left(\frac{c}{r} \right)} 1+\cos(u)\,du=\frac{\pi r^2}{12}$$

Using the anti-derivative and the FTOC, there results:

$$\frac{r^2}{4}\left[u+\sin(u) \right]_0^{2\sin^{-1}\left(\frac{c}{r} \right)}=\frac{\pi r^2}{12}$$

$$\frac{r^2}{4}\left(2\sin^{-1}\left(\frac{c}{r} \right)+\sin\left(2\sin^{-1}\left(\frac{c}{r} \right) \right) \right)=\frac{\pi r^2}{12}$$

Multiply through by $$\frac{12}{r^2}$$:

$$3\left(2\sin^{-1}\left(\frac{c}{r} \right)+\sin\left(2\sin^{-1}\left(\frac{c}{r} \right) \right) \right)=\pi$$

Using the double-angle identity for sine, we have:

$$6\left(\sin^{-1}\left(\frac{c}{r} \right)+\sin\left(\sin^{-1}\left(\frac{c}{r} \right) \right) \cos\left(\sin^{-1}\left(\frac{c}{r} \right) \right) \right)=\pi$$

$$6\left(\sin^{-1}\left(\frac{c}{r} \right)+\frac{c\sqrt{r^2-c^2}}{r^2} \right)=\pi$$

We may arrange this as:

$$f(c)=6\left(\sin^{-1}\left(\frac{c}{r} \right)+\frac{c\sqrt{r^2-c^2}}{r^2} \right)-\pi=0$$

Without loss of generality, we may let the radius of the circle be 1 unit:

$$f(c)=6\left(\sin^{-1}(c)+c\sqrt{1-c^2} \right)-\pi=0$$

Using a numeric root-finding technique, we find:

$$c\approx0.264932084602777$$

Since the radius of the pizza in the given problem is 8 inches, we then find that the cuts should be made along the lines:

$$c\approx\pm2.119456676822216$$
 
At one point, you suddenly replaced c with sin^-1 (c/r). Can you explain why you did that?
 
Tennisgoalie said:
At one point, you suddenly replaced c with sin^-1 (c/r). Can you explain why you did that?

Yes, I did so in accordance with the substitution I made. Let's go back to this point:

$$\int_0^c \sqrt{r^2-x^2}\,dx=\frac{\pi r^2}{12}$$

Now, we next used the substitution:

$$x=r\sin(\theta)\,\therefore\,dx=r\cos(\theta)$$

Now, originally the limits of integration are in terms of $x$, but we now want them to be in terms of the new variable $\theta$, and we find that:

$$x=r\sin(\theta)$$

May be solved for $\theta$ by dividing through by $r$ and arranging as:

$$\sin(\theta)=\frac{x}{r}$$

And this implies that we may write $\theta$ as a function of $x$ as follows:

$$\theta(x)=\sin^{-1}\left(\frac{x}{r} \right)$$

Hence, we find:

$$\theta(0)=\sin^{-1}\left(\frac{0}{r} \right)=0$$

$$\theta(c)=\sin^{-1}\left(\frac{c}{r} \right)$$

And these are our limits in terms of $\theta$, allowing us the write the definite integral as:

$$r^2\int_0^{\sin^{-1}\left(\frac{c}{r} \right)} \cos^2(\theta)\,d\theta$$

Does this make sense?
 
This makes perfect sense, thank you.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
3K
Replies
2
Views
2K
Replies
6
Views
10K
Replies
4
Views
6K
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 2 ·
Replies
2
Views
1K