D'Alembert's solution of the wave equation

  • Thread starter Gear300
  • Start date
  • #1
1,179
5
For a wave equation η(u,v) = f1(u) + f2(v) where u = x - ct and v = x + ct, consider an initial displacement η = η0(x) and an initial velocity ∂tη = [itex]\dot{η_{0}}(x)[/itex].

I'm a little confused with the velocity initial condition; shouldn't the time derivative of η0(x) be 0?
 
Last edited:
  • Like
Likes bosque

Answers and Replies

  • #2
Ken G
Gold Member
4,438
333
For a wave equation η(u,v) = f1(u) + f2(v) where u = x - ct and v = x + ct, consider an initial displacement η = η0(x) and an initial velocity ∂tη = [itex]\dot{η_{0}}(x)[/itex].

I'm a little confused with the velocity initial condition; shouldn't the time derivative of η0(x) be 0?
I think the problem you are having is that the explicit time derivative of a function of only x is zero. But note the explicit time derivative is not applied to the [itex]η_{0}(x)[/itex] function, it is applied to the [itex]η(x,t)[/itex] function at t=0, and that is just given the name [itex]\dot{η_{0}}(x)[/itex]. You could call it anything-- call it h(x) if you like. The key point is, it is a constraint on the [itex]η(x,t)[/itex] function, without which you cannot get a unique solution. Think of the two constraints as being on η(x,t) at t=0 and on ∂tη(x,t) at t=0.
 
  • Like
Likes bosque
  • #3
1,179
5
Thanks for the reply. I figured the dot was implying the time derivation of the first constraint.
 
  • #4
Ken G
Gold Member
4,438
333
So do you see now that this is not the case? There are two independent constraints there, they have no connection to each other other than that they are both taken as constraints on the full solution.
 
  • Like
Likes bosque

Related Threads on D'Alembert's solution of the wave equation

Replies
5
Views
466
Replies
18
Views
2K
Replies
2
Views
2K
  • Last Post
Replies
9
Views
4K
Replies
4
Views
2K
Replies
14
Views
1K
Replies
3
Views
2K
Replies
10
Views
8K
  • Last Post
Replies
4
Views
1K
Top