Decomposition into irreps of compact Lie group

  • Context: Graduate 
  • Thread starter Thread starter Orodruin
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on decomposing representations of the compact Lie group ##SO(3)## into irreducible representations using character theory. The character inner product is defined for finite groups and generalized for compact Lie groups, with specific formulas provided for both cases. The user seeks to determine the function ##f(\theta)## that relates to the integration of characters over the conjugacy classes of ##SO(3)##, ultimately discovering that the correct mapping involves using ##\sin^2(\theta/2)## instead of ##\sin^2(\theta)##. This adjustment yields accurate results for the representation ##\operatorname{Sym}^2(\operatorname{Sym}^2 V)##.

PREREQUISITES
  • Understanding of character theory in representation theory
  • Familiarity with compact Lie groups, specifically ##SO(3)##
  • Knowledge of the Haar measure and its application in integration over groups
  • Basic proficiency in mathematical notation and integrals
NEXT STEPS
  • Study the Weyl integration formula and its applications in representation theory
  • Explore the properties of characters for compact Lie groups
  • Investigate the relationship between ##SU(2)## and ##SO(3)## in representation theory
  • Learn about the implications of the character inner product in decomposing representations
USEFUL FOR

Mathematicians, physicists, and researchers working in representation theory, particularly those focusing on compact Lie groups and their applications in quantum mechanics and geometry.

Orodruin
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Gold Member
2025 Award
Messages
22,820
Reaction score
14,859
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product
$$
\langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$
where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be rewritten as
$$
\langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{C \in [G]} n(C) \chi(C) \chi_0(C)^*,
$$
where ##[G]## is the set of conjugacy classes of ##G## and ##n(C)## is the number of elements in ##C##.

This should generalise to compact Lie groups with the character inner product given by
$$
\langle \chi, \chi_0\rangle = \frac{1}{V_G} \int_{g\in G} \chi(g) \chi_0(g)^* d\mu_G
$$
where ##V_G = \int_{g\in G}d\mu_G## and ##d\mu_G## is the Haar measure on ##G##. The corresponding expression on the conjugacy class level should be
$$
\langle \chi, \chi_0\rangle = \frac{1}{V_G} \int_{C\in [G]} \chi(C) \chi_0(C)^* d\mu_{[G]}
$$
with ##d\mu_{[G]}## being a measure on the conjugacy classes determined by integrating the Haar measure over each conjugacy class. Right?

My particular problem is doing this for ##SO(3)##. More explicitly, the conjugacy classes of ##SO(3)## should be parametrised by the rotation angle ##\theta## (with the conjugate elements being rotations around different axis by the same ##\theta##). I am especially looking for the function ##f(\theta)## such that
$$
\langle \chi, \chi_0\rangle = \frac{1}{V_G} \int_{0}^\pi \chi(\theta) \chi_0(\theta)^* f(\theta) d\theta.$$

Any insights?
 
Physics news on Phys.org
fresh_42 said:
I have found the formula
$$
\int_{\operatorname{SU}(2)}f(\theta)\,d\theta = \dfrac{2}{\pi}\int_0^\pi (f\circ e)(t)\sin^2(t)\,dt
$$
including a proof, but in German. Maybe it helps anyway.

Source: https://wwwold.mathematik.tu-dortmund.de/~lschwach/SS10/Bachelor-Seminar/Averim.pdf
I think I found my issue. I was trying ##\sin^2(\theta)##, but when mapping from SU(2) to SO(3), the ##t## here is actually ##\theta/2##?

Using ##\sin^2(\theta)## I obtained that the fundamental representation should contain the trivial one once, which would be absurd. Using ##\sin^2(\theta/2)## gives zero as expected.

It also gives the correct result (2) for the representation ##\operatorname{Sym}^2(\operatorname{Sym}^2 V)## (with ##V## being the fundamental representation), which is what I was really looking for.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K