Saitama
- 4,244
- 93
Evaluate the following:
$$\int_0^{\pi} e^{\cos x} \cos(\sin x)\,\,dx$$
$$\int_0^{\pi} e^{\cos x} \cos(\sin x)\,\,dx$$
Last edited:
Pranav said:Evaluate the following:
$$\int_0^{\pi} e^{\cos x} \cos(\sin x)$$
ZaidAlyafey said:Are you sure of the question because you are missing $dx$ ?
Random Variable said:$$\int_{0}^{\pi} e^{\cos x} \cos(\sin x) \ dx = \frac{1}{2} \text{Re} \int_{-\pi}^{\pi} e^{e^{iz}} \ dz = \frac{1}{2} \text{Re} \frac{1}{i} \int_{|z|=1} \frac{e^{z}}{z} \ dz $$
$$ = \frac{1}{2} \text{Re} \frac{1}{i} 2 \pi i \ \text{Res} \left[ \frac{e^{z}}{z},0 \right] = \text{Re} \frac{1}{i} \pi i(1) = \pi $$
Pranav said:I forgot to mention in my previous post that there is still an alternative way which does not use the "res" thing used by Random Variable. The challenge is still open. :)
ZaidAlyafey said:$$I = Re \int^\pi_0 e^{e^{ix}}\,dx = Re \int^\pi_0 \sum_{n\geq 0} \frac{e^{inx}}{n!} \, dx=\int^\pi_0 \sum_{n\geq 0} \frac{\cos(nx)}{n!}=\int^\pi_0 1 \, dx +\int^\pi_0 \sum_{n\geq 1}\frac{\cos(nx)}{n!} \,dx=\pi+0 =\pi$$