MHB Definite integral challenge ∫cos2017xsin2017xdx

Click For Summary
The discussion focuses on calculating the definite integral of the function \(\int_{0}^{\frac{\pi}{2}} \cos^{2017}x \sin^{2017}x dx\). Participants share their solutions and methods for solving the integral, with one user expressing gratitude for another's contribution. An alternative solution is also mentioned, indicating multiple approaches to the problem. The integral is a trigonometric challenge that engages users in mathematical problem-solving. Overall, the thread highlights collaborative efforts in tackling complex integrals.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Calculate the following definite trigonometric integral:

\[\int_{0}^{\frac{\pi}{2}} \cos^{2017}x \sin^{2017}x dx\].
 
Mathematics news on Phys.org
lfdahl said:
Calculate the following definite trigonometric integral:

\[\int_{0}^{\frac{\pi}{2}} \cos^{2017}x \sin^{2017}x dx\]=A.
my solution :
$Using \,Beta \,Function :$
$$\beta(m,n)=2\int_{0}^{\frac{\pi}{2}}sin^{2m-1}x\,\,cos^{2n-1}x\, dx
=\dfrac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}=\dfrac{(m-1)!(n-1)!}{(m+n-1)!}$$
here $m=n=1009$
so $A=\dfrac{\Gamma(1009)\Gamma(1009)}{2\Gamma(2018)}=\dfrac{(1008)!\times(1008)!}{2\times(2017)!}$
 
Last edited:
Albert said:
my solution :
$Using \,Beta \,Function :$
$$\beta(m,n)=2\int_{0}^{\frac{\pi}{2}}sin^{2m-1}x\,\,cos^{2n-1}x\, dx
=\dfrac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}=\dfrac{(m-1)!(n-1)!}{(m+n-1)!}$$
here $m=n=1009$
so $A=\dfrac{\Gamma(1009)\Gamma(1009)}{2\Gamma(2018)}=\dfrac{(1008)!\times(1008)!}{2\times(2017)!}$
Thankyou, Albert!, for your fine solution! Well done.
 
An alternative solution:

\[\int_{0}^{\frac{\pi}{2}}\cos^{2017}x \sin^{2017}x dx =2^{-2017}\int_{0}^{\frac{\pi}{2}} \sin^{2017}2x dx\]Consider the general case: $\int_{0}^{\frac{\pi}{2}} \sin^{n}2x dx$.

Integration by parts:
\[\int_{0}^{\frac{\pi}{2}} \sin^{n}2x dx = \int_{0}^{\frac{\pi}{2}} \sin 2x\sin^{n-1}2x dx \\\\ =\left [ -\frac{\cos 2x}{2} \sin^{n-1}2x \right ]_0^{\frac{\pi}{2}}+(n-1)\int_{0}^{\frac{\pi}{2}} \cos^2 2x\sin^{n-2}2xdx \\\\ = (n-1)\int_{0}^{\frac{\pi}{2}} \left ( 1-\sin^2 2x\right ) \sin^{n-2}2xdx \\\\ = (n-1)\int_{0}^{\frac{\pi}{2}} \sin^{n-2}2xdx-(n-1)\int_{0}^{\frac{\pi}{2}} \sin^{n}2xdx\]
- Thus we arrive at the reduction form:

\[\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin^{n}2xdx = \frac{n-1}{n}\int_{0}^{\frac{\pi}{2}} \sin^{n-2}2xdx\]

Now, we use this equation repeatedly:

\[\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin^{n}2xdx = \frac{n-1}{n}\cdot \frac{n-3}{n-2}\int_{0}^{\frac{\pi}{2}} sin^{n-4 }2xdx \\\\ \\\\= \left\{\begin{matrix} \frac{n-1}{n}\cdot \frac{n-3}{n-2}\cdot ...\cdot \frac{2}{3}\int_{0}^{\frac{\pi}{2}} \sin 2xdx, \: \: \: n\: \: odd\\ \\ \frac{n-1}{n}\cdot \frac{n-3}{n-2}\cdot ...\cdot \frac{3}{4}\cdot \frac{1}{2}\int_{0}^{\frac{\pi}{2}} dx, \: \: \: n\: \: even \end{matrix}\right. \\\\ \\\\ =\left\{\begin{matrix} \frac{(n-1)!}{n!}, \: \: \: n\: \: odd\\ \\ \frac{(n-1)!}{n!}\frac{\pi}{2} , \: \: \: n\: \: even\end{matrix}\right.\]Returning to our starting problem, we get:

\[\int_{0}^{\frac{\pi}{2}}\cos^{2017}x \sin^{2017}x dx =2^{-2017}\int_{0}^{\frac{\pi}{2}} \sin^{2017}2x dx =2^{-2017}\frac{2016!}{2017!}
\\\\= \frac{1}{2}\cdot 2^{-2016}\frac{(2016!)^2}{2017!}=\frac{(1008!)^2}{2\cdot 2017!}\]