MHB Definite integral challenge ∫cos2017xsin2017xdx

Click For Summary
The discussion focuses on calculating the definite integral of the function \(\int_{0}^{\frac{\pi}{2}} \cos^{2017}x \sin^{2017}x dx\). Participants share their solutions and methods for solving the integral, with one user expressing gratitude for another's contribution. An alternative solution is also mentioned, indicating multiple approaches to the problem. The integral is a trigonometric challenge that engages users in mathematical problem-solving. Overall, the thread highlights collaborative efforts in tackling complex integrals.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Calculate the following definite trigonometric integral:

\[\int_{0}^{\frac{\pi}{2}} \cos^{2017}x \sin^{2017}x dx\].
 
Mathematics news on Phys.org
lfdahl said:
Calculate the following definite trigonometric integral:

\[\int_{0}^{\frac{\pi}{2}} \cos^{2017}x \sin^{2017}x dx\]=A.
my solution :
$Using \,Beta \,Function :$
$$\beta(m,n)=2\int_{0}^{\frac{\pi}{2}}sin^{2m-1}x\,\,cos^{2n-1}x\, dx
=\dfrac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}=\dfrac{(m-1)!(n-1)!}{(m+n-1)!}$$
here $m=n=1009$
so $A=\dfrac{\Gamma(1009)\Gamma(1009)}{2\Gamma(2018)}=\dfrac{(1008)!\times(1008)!}{2\times(2017)!}$
 
Last edited:
Albert said:
my solution :
$Using \,Beta \,Function :$
$$\beta(m,n)=2\int_{0}^{\frac{\pi}{2}}sin^{2m-1}x\,\,cos^{2n-1}x\, dx
=\dfrac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}=\dfrac{(m-1)!(n-1)!}{(m+n-1)!}$$
here $m=n=1009$
so $A=\dfrac{\Gamma(1009)\Gamma(1009)}{2\Gamma(2018)}=\dfrac{(1008)!\times(1008)!}{2\times(2017)!}$
Thankyou, Albert!, for your fine solution! Well done.
 
An alternative solution:

\[\int_{0}^{\frac{\pi}{2}}\cos^{2017}x \sin^{2017}x dx =2^{-2017}\int_{0}^{\frac{\pi}{2}} \sin^{2017}2x dx\]Consider the general case: $\int_{0}^{\frac{\pi}{2}} \sin^{n}2x dx$.

Integration by parts:
\[\int_{0}^{\frac{\pi}{2}} \sin^{n}2x dx = \int_{0}^{\frac{\pi}{2}} \sin 2x\sin^{n-1}2x dx \\\\ =\left [ -\frac{\cos 2x}{2} \sin^{n-1}2x \right ]_0^{\frac{\pi}{2}}+(n-1)\int_{0}^{\frac{\pi}{2}} \cos^2 2x\sin^{n-2}2xdx \\\\ = (n-1)\int_{0}^{\frac{\pi}{2}} \left ( 1-\sin^2 2x\right ) \sin^{n-2}2xdx \\\\ = (n-1)\int_{0}^{\frac{\pi}{2}} \sin^{n-2}2xdx-(n-1)\int_{0}^{\frac{\pi}{2}} \sin^{n}2xdx\]
- Thus we arrive at the reduction form:

\[\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin^{n}2xdx = \frac{n-1}{n}\int_{0}^{\frac{\pi}{2}} \sin^{n-2}2xdx\]

Now, we use this equation repeatedly:

\[\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin^{n}2xdx = \frac{n-1}{n}\cdot \frac{n-3}{n-2}\int_{0}^{\frac{\pi}{2}} sin^{n-4 }2xdx \\\\ \\\\= \left\{\begin{matrix} \frac{n-1}{n}\cdot \frac{n-3}{n-2}\cdot ...\cdot \frac{2}{3}\int_{0}^{\frac{\pi}{2}} \sin 2xdx, \: \: \: n\: \: odd\\ \\ \frac{n-1}{n}\cdot \frac{n-3}{n-2}\cdot ...\cdot \frac{3}{4}\cdot \frac{1}{2}\int_{0}^{\frac{\pi}{2}} dx, \: \: \: n\: \: even \end{matrix}\right. \\\\ \\\\ =\left\{\begin{matrix} \frac{(n-1)!}{n!}, \: \: \: n\: \: odd\\ \\ \frac{(n-1)!}{n!}\frac{\pi}{2} , \: \: \: n\: \: even\end{matrix}\right.\]Returning to our starting problem, we get:

\[\int_{0}^{\frac{\pi}{2}}\cos^{2017}x \sin^{2017}x dx =2^{-2017}\int_{0}^{\frac{\pi}{2}} \sin^{2017}2x dx =2^{-2017}\frac{2016!}{2017!}
\\\\= \frac{1}{2}\cdot 2^{-2016}\frac{(2016!)^2}{2017!}=\frac{(1008!)^2}{2\cdot 2017!}\]
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K