MHB Definite integral challenge ∫cos2017xsin2017xdx

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Calculate the following definite trigonometric integral:

\[\int_{0}^{\frac{\pi}{2}} \cos^{2017}x \sin^{2017}x dx\].
 
Mathematics news on Phys.org
lfdahl said:
Calculate the following definite trigonometric integral:

\[\int_{0}^{\frac{\pi}{2}} \cos^{2017}x \sin^{2017}x dx\]=A.
my solution :
$Using \,Beta \,Function :$
$$\beta(m,n)=2\int_{0}^{\frac{\pi}{2}}sin^{2m-1}x\,\,cos^{2n-1}x\, dx
=\dfrac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}=\dfrac{(m-1)!(n-1)!}{(m+n-1)!}$$
here $m=n=1009$
so $A=\dfrac{\Gamma(1009)\Gamma(1009)}{2\Gamma(2018)}=\dfrac{(1008)!\times(1008)!}{2\times(2017)!}$
 
Last edited:
Albert said:
my solution :
$Using \,Beta \,Function :$
$$\beta(m,n)=2\int_{0}^{\frac{\pi}{2}}sin^{2m-1}x\,\,cos^{2n-1}x\, dx
=\dfrac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}=\dfrac{(m-1)!(n-1)!}{(m+n-1)!}$$
here $m=n=1009$
so $A=\dfrac{\Gamma(1009)\Gamma(1009)}{2\Gamma(2018)}=\dfrac{(1008)!\times(1008)!}{2\times(2017)!}$
Thankyou, Albert!, for your fine solution! Well done.
 
An alternative solution:

\[\int_{0}^{\frac{\pi}{2}}\cos^{2017}x \sin^{2017}x dx =2^{-2017}\int_{0}^{\frac{\pi}{2}} \sin^{2017}2x dx\]Consider the general case: $\int_{0}^{\frac{\pi}{2}} \sin^{n}2x dx$.

Integration by parts:
\[\int_{0}^{\frac{\pi}{2}} \sin^{n}2x dx = \int_{0}^{\frac{\pi}{2}} \sin 2x\sin^{n-1}2x dx \\\\ =\left [ -\frac{\cos 2x}{2} \sin^{n-1}2x \right ]_0^{\frac{\pi}{2}}+(n-1)\int_{0}^{\frac{\pi}{2}} \cos^2 2x\sin^{n-2}2xdx \\\\ = (n-1)\int_{0}^{\frac{\pi}{2}} \left ( 1-\sin^2 2x\right ) \sin^{n-2}2xdx \\\\ = (n-1)\int_{0}^{\frac{\pi}{2}} \sin^{n-2}2xdx-(n-1)\int_{0}^{\frac{\pi}{2}} \sin^{n}2xdx\]
- Thus we arrive at the reduction form:

\[\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin^{n}2xdx = \frac{n-1}{n}\int_{0}^{\frac{\pi}{2}} \sin^{n-2}2xdx\]

Now, we use this equation repeatedly:

\[\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin^{n}2xdx = \frac{n-1}{n}\cdot \frac{n-3}{n-2}\int_{0}^{\frac{\pi}{2}} sin^{n-4 }2xdx \\\\ \\\\= \left\{\begin{matrix} \frac{n-1}{n}\cdot \frac{n-3}{n-2}\cdot ...\cdot \frac{2}{3}\int_{0}^{\frac{\pi}{2}} \sin 2xdx, \: \: \: n\: \: odd\\ \\ \frac{n-1}{n}\cdot \frac{n-3}{n-2}\cdot ...\cdot \frac{3}{4}\cdot \frac{1}{2}\int_{0}^{\frac{\pi}{2}} dx, \: \: \: n\: \: even \end{matrix}\right. \\\\ \\\\ =\left\{\begin{matrix} \frac{(n-1)!}{n!}, \: \: \: n\: \: odd\\ \\ \frac{(n-1)!}{n!}\frac{\pi}{2} , \: \: \: n\: \: even\end{matrix}\right.\]Returning to our starting problem, we get:

\[\int_{0}^{\frac{\pi}{2}}\cos^{2017}x \sin^{2017}x dx =2^{-2017}\int_{0}^{\frac{\pi}{2}} \sin^{2017}2x dx =2^{-2017}\frac{2016!}{2017!}
\\\\= \frac{1}{2}\cdot 2^{-2016}\frac{(2016!)^2}{2017!}=\frac{(1008!)^2}{2\cdot 2017!}\]
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top