Definite integral challenge ∫cos2017xsin2017xdx

Click For Summary

Discussion Overview

The discussion centers around the evaluation of the definite integral \(\int_{0}^{\frac{\pi}{2}} \cos^{2017}x \sin^{2017}x dx\). Participants explore various approaches to solving this trigonometric integral.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant presents the integral for calculation without providing a solution.
  • Another participant states the integral equals A and begins to outline their solution process.
  • A third participant expresses gratitude for a previous solution, indicating a collaborative atmosphere.
  • A fourth participant introduces an alternative solution, suggesting multiple methods may exist.

Areas of Agreement / Disagreement

The discussion does not appear to reach a consensus, as multiple solutions and approaches are being proposed without resolution on which is correct.

Contextual Notes

Participants do not clarify specific assumptions or methods used in their solutions, leaving some steps and reasoning potentially unresolved.

Who May Find This Useful

Individuals interested in advanced calculus, particularly those focused on trigonometric integrals and their evaluations.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Calculate the following definite trigonometric integral:

\[\int_{0}^{\frac{\pi}{2}} \cos^{2017}x \sin^{2017}x dx\].
 
Physics news on Phys.org
lfdahl said:
Calculate the following definite trigonometric integral:

\[\int_{0}^{\frac{\pi}{2}} \cos^{2017}x \sin^{2017}x dx\]=A.
my solution :
$Using \,Beta \,Function :$
$$\beta(m,n)=2\int_{0}^{\frac{\pi}{2}}sin^{2m-1}x\,\,cos^{2n-1}x\, dx
=\dfrac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}=\dfrac{(m-1)!(n-1)!}{(m+n-1)!}$$
here $m=n=1009$
so $A=\dfrac{\Gamma(1009)\Gamma(1009)}{2\Gamma(2018)}=\dfrac{(1008)!\times(1008)!}{2\times(2017)!}$
 
Last edited:
Albert said:
my solution :
$Using \,Beta \,Function :$
$$\beta(m,n)=2\int_{0}^{\frac{\pi}{2}}sin^{2m-1}x\,\,cos^{2n-1}x\, dx
=\dfrac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}=\dfrac{(m-1)!(n-1)!}{(m+n-1)!}$$
here $m=n=1009$
so $A=\dfrac{\Gamma(1009)\Gamma(1009)}{2\Gamma(2018)}=\dfrac{(1008)!\times(1008)!}{2\times(2017)!}$
Thankyou, Albert!, for your fine solution! Well done.
 
An alternative solution:

\[\int_{0}^{\frac{\pi}{2}}\cos^{2017}x \sin^{2017}x dx =2^{-2017}\int_{0}^{\frac{\pi}{2}} \sin^{2017}2x dx\]Consider the general case: $\int_{0}^{\frac{\pi}{2}} \sin^{n}2x dx$.

Integration by parts:
\[\int_{0}^{\frac{\pi}{2}} \sin^{n}2x dx = \int_{0}^{\frac{\pi}{2}} \sin 2x\sin^{n-1}2x dx \\\\ =\left [ -\frac{\cos 2x}{2} \sin^{n-1}2x \right ]_0^{\frac{\pi}{2}}+(n-1)\int_{0}^{\frac{\pi}{2}} \cos^2 2x\sin^{n-2}2xdx \\\\ = (n-1)\int_{0}^{\frac{\pi}{2}} \left ( 1-\sin^2 2x\right ) \sin^{n-2}2xdx \\\\ = (n-1)\int_{0}^{\frac{\pi}{2}} \sin^{n-2}2xdx-(n-1)\int_{0}^{\frac{\pi}{2}} \sin^{n}2xdx\]
- Thus we arrive at the reduction form:

\[\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin^{n}2xdx = \frac{n-1}{n}\int_{0}^{\frac{\pi}{2}} \sin^{n-2}2xdx\]

Now, we use this equation repeatedly:

\[\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin^{n}2xdx = \frac{n-1}{n}\cdot \frac{n-3}{n-2}\int_{0}^{\frac{\pi}{2}} sin^{n-4 }2xdx \\\\ \\\\= \left\{\begin{matrix} \frac{n-1}{n}\cdot \frac{n-3}{n-2}\cdot ...\cdot \frac{2}{3}\int_{0}^{\frac{\pi}{2}} \sin 2xdx, \: \: \: n\: \: odd\\ \\ \frac{n-1}{n}\cdot \frac{n-3}{n-2}\cdot ...\cdot \frac{3}{4}\cdot \frac{1}{2}\int_{0}^{\frac{\pi}{2}} dx, \: \: \: n\: \: even \end{matrix}\right. \\\\ \\\\ =\left\{\begin{matrix} \frac{(n-1)!}{n!}, \: \: \: n\: \: odd\\ \\ \frac{(n-1)!}{n!}\frac{\pi}{2} , \: \: \: n\: \: even\end{matrix}\right.\]Returning to our starting problem, we get:

\[\int_{0}^{\frac{\pi}{2}}\cos^{2017}x \sin^{2017}x dx =2^{-2017}\int_{0}^{\frac{\pi}{2}} \sin^{2017}2x dx =2^{-2017}\frac{2016!}{2017!}
\\\\= \frac{1}{2}\cdot 2^{-2016}\frac{(2016!)^2}{2017!}=\frac{(1008!)^2}{2\cdot 2017!}\]
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K