Definite integral challenge ∫cos2017xsin2017xdx

Click For Summary
SUMMARY

The discussion focuses on calculating the definite integral \(\int_{0}^{\frac{\pi}{2}} \cos^{2017}x \sin^{2017}x \, dx\). The integral evaluates to \(A\), with participants sharing various methods of solving it. Notably, one participant, Albert, provided a well-received solution, prompting further exploration of alternative approaches to the problem.

PREREQUISITES
  • Understanding of definite integrals in calculus
  • Familiarity with trigonometric identities
  • Knowledge of integration techniques, particularly for powers of sine and cosine
  • Experience with the Beta function and its relationship to definite integrals
NEXT STEPS
  • Study the properties of the Beta function and its application in evaluating integrals
  • Learn advanced integration techniques for trigonometric functions
  • Explore the use of symmetry in definite integrals involving sine and cosine
  • Investigate alternative methods for solving high-power trigonometric integrals
USEFUL FOR

Mathematics students, calculus instructors, and anyone interested in advanced integration techniques and trigonometric identities.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Calculate the following definite trigonometric integral:

\[\int_{0}^{\frac{\pi}{2}} \cos^{2017}x \sin^{2017}x dx\].
 
Physics news on Phys.org
lfdahl said:
Calculate the following definite trigonometric integral:

\[\int_{0}^{\frac{\pi}{2}} \cos^{2017}x \sin^{2017}x dx\]=A.
my solution :
$Using \,Beta \,Function :$
$$\beta(m,n)=2\int_{0}^{\frac{\pi}{2}}sin^{2m-1}x\,\,cos^{2n-1}x\, dx
=\dfrac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}=\dfrac{(m-1)!(n-1)!}{(m+n-1)!}$$
here $m=n=1009$
so $A=\dfrac{\Gamma(1009)\Gamma(1009)}{2\Gamma(2018)}=\dfrac{(1008)!\times(1008)!}{2\times(2017)!}$
 
Last edited:
Albert said:
my solution :
$Using \,Beta \,Function :$
$$\beta(m,n)=2\int_{0}^{\frac{\pi}{2}}sin^{2m-1}x\,\,cos^{2n-1}x\, dx
=\dfrac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}=\dfrac{(m-1)!(n-1)!}{(m+n-1)!}$$
here $m=n=1009$
so $A=\dfrac{\Gamma(1009)\Gamma(1009)}{2\Gamma(2018)}=\dfrac{(1008)!\times(1008)!}{2\times(2017)!}$
Thankyou, Albert!, for your fine solution! Well done.
 
An alternative solution:

\[\int_{0}^{\frac{\pi}{2}}\cos^{2017}x \sin^{2017}x dx =2^{-2017}\int_{0}^{\frac{\pi}{2}} \sin^{2017}2x dx\]Consider the general case: $\int_{0}^{\frac{\pi}{2}} \sin^{n}2x dx$.

Integration by parts:
\[\int_{0}^{\frac{\pi}{2}} \sin^{n}2x dx = \int_{0}^{\frac{\pi}{2}} \sin 2x\sin^{n-1}2x dx \\\\ =\left [ -\frac{\cos 2x}{2} \sin^{n-1}2x \right ]_0^{\frac{\pi}{2}}+(n-1)\int_{0}^{\frac{\pi}{2}} \cos^2 2x\sin^{n-2}2xdx \\\\ = (n-1)\int_{0}^{\frac{\pi}{2}} \left ( 1-\sin^2 2x\right ) \sin^{n-2}2xdx \\\\ = (n-1)\int_{0}^{\frac{\pi}{2}} \sin^{n-2}2xdx-(n-1)\int_{0}^{\frac{\pi}{2}} \sin^{n}2xdx\]
- Thus we arrive at the reduction form:

\[\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin^{n}2xdx = \frac{n-1}{n}\int_{0}^{\frac{\pi}{2}} \sin^{n-2}2xdx\]

Now, we use this equation repeatedly:

\[\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin^{n}2xdx = \frac{n-1}{n}\cdot \frac{n-3}{n-2}\int_{0}^{\frac{\pi}{2}} sin^{n-4 }2xdx \\\\ \\\\= \left\{\begin{matrix} \frac{n-1}{n}\cdot \frac{n-3}{n-2}\cdot ...\cdot \frac{2}{3}\int_{0}^{\frac{\pi}{2}} \sin 2xdx, \: \: \: n\: \: odd\\ \\ \frac{n-1}{n}\cdot \frac{n-3}{n-2}\cdot ...\cdot \frac{3}{4}\cdot \frac{1}{2}\int_{0}^{\frac{\pi}{2}} dx, \: \: \: n\: \: even \end{matrix}\right. \\\\ \\\\ =\left\{\begin{matrix} \frac{(n-1)!}{n!}, \: \: \: n\: \: odd\\ \\ \frac{(n-1)!}{n!}\frac{\pi}{2} , \: \: \: n\: \: even\end{matrix}\right.\]Returning to our starting problem, we get:

\[\int_{0}^{\frac{\pi}{2}}\cos^{2017}x \sin^{2017}x dx =2^{-2017}\int_{0}^{\frac{\pi}{2}} \sin^{2017}2x dx =2^{-2017}\frac{2016!}{2017!}
\\\\= \frac{1}{2}\cdot 2^{-2016}\frac{(2016!)^2}{2017!}=\frac{(1008!)^2}{2\cdot 2017!}\]
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K