MHB Definite integral challenge ∫ln(2−2cosx)dx=0

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove, that the definite integral

$$\int_{0}^{\pi}\ln (2-2\cos x)dx = 0.$$
 
Mathematics news on Phys.org
Call the integral $I$. Let $x \mapsto \pi-x$ then we get $\displaystyle \int_0^{\pi}\ln(2+2\cos{x})\,{dx}$.

Then $\displaystyle 2I = \int_0^{\pi}\log(4\sin^2{x})\,{dx} \implies I = \int_0^{\pi}\log(\sin{x}) +\log(2)\,{dx}$

But $\displaystyle\log (\sin x)=-\sum\limits_{j=1}^{\infty }{\frac{\cos (2jx)}{j}}-\log( 2)$. Using this we end up with

$\displaystyle I = -\int_0^{\pi} \sum_{j=1}^{\infty} \frac{1}{j} \cos{2jx} \,{dx}= -\sum_{j=1}^{\infty} \frac{1}{j} \int_0^{\pi} \cos(2jx) \,{dx} = 0$ as required.
 
Last edited by a moderator:
June29 said:
Call the integral $I$. Let $x \mapsto \pi-x$ then we get $\displaystyle \int_0^{\pi}\ln(2+2\cos{x})\,{dx}$.

Then $\displaystyle 2I = \int_0^{\pi}\log(4\sin^2{x})\,{dx} \implies I = \int_0^{\pi}\log(\sin{x}) +\log(2)\,{dx}$

But $\displaystyle\log (\sin x)=-\sum\limits_{j=1}^{\infty }{\frac{\cos (2jx)}{j}}-\log( 2)$. Using this we end up with

$\displaystyle I = -\int_0^{\pi} \sum_{j=1}^{\infty} \frac{1}{j} \cos{2jx} \,{dx}= -\sum_{j=1}^{\infty} \frac{1}{j} \int_0^{\pi} \cos(2jx) \,{dx} = 0$ as required.

Welcome, June29! - to the challenge forum. What a nice entry you make with this fine solution of yours!
Thankyou for your participation.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top