MHB Definite integral involving sine and hyperbolic sine

Click For Summary
The integral $\int_0^{\infty} \frac{\sin x}{\cos x + \cosh x}\, \mathrm dx$ can be evaluated using exponential forms of the sine, cosine, and hyperbolic cosine functions. The sine function is expressed as $\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$, while cosine and hyperbolic cosine are represented as $\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$ and $\cosh(x) = \frac{e^x + e^{-x}}{2}$, respectively. This transformation simplifies the integral into a more manageable form for calculation. The discussion emphasizes the utility of exponential representations in solving integrals involving trigonometric and hyperbolic functions. Ultimately, the integral can be solved effectively by applying these exponential identities.
MountEvariste
Messages
85
Reaction score
0
Calculate $\displaystyle \int_0^{\infty} \frac{\sin x}{\cos x + \cosh x}\, \mathrm dx.$
 
Mathematics news on Phys.org
If nothing else, you can express these functions as exponentials.

$sin(x)= \frac{e^{ix}- e^{-ix}}{2i}$
$cos(x)= \frac{e^{ix}+ e^{-ix}}{2}$
$cosh(x)= \frac{e^x+ e^{-x}}{2}$
 
Country Boy said:
If nothing else, you can express these functions as exponentials.

$sin(x)= \frac{e^{ix}- e^{-ix}}{2i}$
$cos(x)= \frac{e^{ix}+ e^{-ix}}{2}$
$cosh(x)= \frac{e^x+ e^{-x}}{2}$
Can you derive an infinite series of the integrand using these definitions?
 
Show that $\displaystyle \frac{\sin x }{\cos x + \cosh x} = i \bigg( \frac{1}{1+e^{ix-x}}-\frac{1}{1+e^{-ix-x}}\bigg)$.

Expand the RHS into geometric series to get, for $x \ge 0$:

$\displaystyle \frac{\sin x}{\cos x + \cosh x}=2\sum_{n=1}^{\infty}(-1)^{n-1}\sin(nx)e^{-nx}.$

Source: Yaghoub Sharifi.
 
Using the infinite sum in post #4, the answer follows by switching the order of sum and integral and using the result

$\displaystyle \int_0^{\infty} e^{-ax}\sin{bx} \, \mathrm dx =\frac{b}{a^2+b^2}$

Which can be derived via integration by parts or considering the fact that $\Im \left( e^{-ax+ibx} \right) = e^{-ax}\sin bx.$

See a detailed solution in this blog.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
4
Views
2K
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K