MHB Definite integral involving sine and hyperbolic sine

AI Thread Summary
The integral $\int_0^{\infty} \frac{\sin x}{\cos x + \cosh x}\, \mathrm dx$ can be evaluated using exponential forms of the sine, cosine, and hyperbolic cosine functions. The sine function is expressed as $\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$, while cosine and hyperbolic cosine are represented as $\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$ and $\cosh(x) = \frac{e^x + e^{-x}}{2}$, respectively. This transformation simplifies the integral into a more manageable form for calculation. The discussion emphasizes the utility of exponential representations in solving integrals involving trigonometric and hyperbolic functions. Ultimately, the integral can be solved effectively by applying these exponential identities.
MountEvariste
Messages
85
Reaction score
0
Calculate $\displaystyle \int_0^{\infty} \frac{\sin x}{\cos x + \cosh x}\, \mathrm dx.$
 
Mathematics news on Phys.org
If nothing else, you can express these functions as exponentials.

$sin(x)= \frac{e^{ix}- e^{-ix}}{2i}$
$cos(x)= \frac{e^{ix}+ e^{-ix}}{2}$
$cosh(x)= \frac{e^x+ e^{-x}}{2}$
 
Country Boy said:
If nothing else, you can express these functions as exponentials.

$sin(x)= \frac{e^{ix}- e^{-ix}}{2i}$
$cos(x)= \frac{e^{ix}+ e^{-ix}}{2}$
$cosh(x)= \frac{e^x+ e^{-x}}{2}$
Can you derive an infinite series of the integrand using these definitions?
 
Show that $\displaystyle \frac{\sin x }{\cos x + \cosh x} = i \bigg( \frac{1}{1+e^{ix-x}}-\frac{1}{1+e^{-ix-x}}\bigg)$.

Expand the RHS into geometric series to get, for $x \ge 0$:

$\displaystyle \frac{\sin x}{\cos x + \cosh x}=2\sum_{n=1}^{\infty}(-1)^{n-1}\sin(nx)e^{-nx}.$

Source: Yaghoub Sharifi.
 
Using the infinite sum in post #4, the answer follows by switching the order of sum and integral and using the result

$\displaystyle \int_0^{\infty} e^{-ax}\sin{bx} \, \mathrm dx =\frac{b}{a^2+b^2}$

Which can be derived via integration by parts or considering the fact that $\Im \left( e^{-ax+ibx} \right) = e^{-ax}\sin bx.$

See a detailed solution in this blog.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top