Definite integral involving sine and hyperbolic sine

Click For Summary

Discussion Overview

The thread discusses the evaluation of the definite integral $\displaystyle \int_0^{\infty} \frac{\sin x}{\cos x + \cosh x}\, \mathrm dx$, exploring various mathematical approaches and representations of the functions involved.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant presents the integral to be evaluated.
  • Another participant suggests expressing the sine, cosine, and hyperbolic cosine functions in terms of exponential functions, providing their respective formulas.
  • A third post reiterates the same exponential representations of the functions without introducing new information.
  • A later post attributes the source of the integral to Yaghoub Sharifi.

Areas of Agreement / Disagreement

There is no consensus on the evaluation of the integral, and the discussion remains unresolved with multiple contributions focusing on the representation of functions rather than a definitive solution.

Contextual Notes

The discussion does not address potential limitations or assumptions related to the convergence of the integral or the validity of the exponential representations in this context.

MountEvariste
Messages
85
Reaction score
0
Calculate $\displaystyle \int_0^{\infty} \frac{\sin x}{\cos x + \cosh x}\, \mathrm dx.$
 
Physics news on Phys.org
If nothing else, you can express these functions as exponentials.

$sin(x)= \frac{e^{ix}- e^{-ix}}{2i}$
$cos(x)= \frac{e^{ix}+ e^{-ix}}{2}$
$cosh(x)= \frac{e^x+ e^{-x}}{2}$
 
Country Boy said:
If nothing else, you can express these functions as exponentials.

$sin(x)= \frac{e^{ix}- e^{-ix}}{2i}$
$cos(x)= \frac{e^{ix}+ e^{-ix}}{2}$
$cosh(x)= \frac{e^x+ e^{-x}}{2}$
Can you derive an infinite series of the integrand using these definitions?
 
Show that $\displaystyle \frac{\sin x }{\cos x + \cosh x} = i \bigg( \frac{1}{1+e^{ix-x}}-\frac{1}{1+e^{-ix-x}}\bigg)$.

Expand the RHS into geometric series to get, for $x \ge 0$:

$\displaystyle \frac{\sin x}{\cos x + \cosh x}=2\sum_{n=1}^{\infty}(-1)^{n-1}\sin(nx)e^{-nx}.$

Source: Yaghoub Sharifi.
 
Using the infinite sum in post #4, the answer follows by switching the order of sum and integral and using the result

$\displaystyle \int_0^{\infty} e^{-ax}\sin{bx} \, \mathrm dx =\frac{b}{a^2+b^2}$

Which can be derived via integration by parts or considering the fact that $\Im \left( e^{-ax+ibx} \right) = e^{-ax}\sin bx.$

See a detailed solution in this blog.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K