Definite integral with Riemann sums

Click For Summary
SUMMARY

The discussion focuses on calculating the upper and lower Riemann sums for the integral ∫₁³(1-7x)dx. The user initially calculated the upper sum incorrectly by assuming n=3 and misunderstood the requirement to provide both sums. The correct upper sum is −26−14/n and the lower sum is −14/n−26, derived from the limits as n approaches infinity. The final answers reflect the algebraic expressions needed without assigning a specific value to n.

PREREQUISITES
  • Understanding of Riemann sums and their application in calculus.
  • Familiarity with integral calculus, specifically definite integrals.
  • Knowledge of algebraic manipulation and summation formulas.
  • Ability to interpret mathematical notation and expressions.
NEXT STEPS
  • Study the concept of Riemann sums in detail, focusing on upper and lower sums.
  • Learn how to compute definite integrals using the Fundamental Theorem of Calculus.
  • Explore the implications of partitioning intervals in calculus.
  • Practice deriving limits of sequences and their applications in calculus.
USEFUL FOR

Students and educators in calculus, mathematicians interested in integral calculus, and anyone seeking to deepen their understanding of Riemann sums and definite integrals.

TheFallen018
Messages
52
Reaction score
0
Heya,

So, I know this is a pretty simple problem, but I seem stuck on it nevertheless.

Here's the question
Calculate the upper and lower sums , on a regular partition of the intervals, for the following integrals
\begin{align*}
\int_{1}^{3}(1-7x)dx
\end{align*}

Please correct me if I'm doing this wrong. Here's what I did
\begin{align*}\Delta x = \frac{3-1}{n} = \frac{2}{n}\end{align*}
\begin{align*}x_{i}=1+\Delta x*i = 1 + \frac{2}{n}i\end{align*}
\begin{align*}f(x_{i}) = (1-7x_{i})) = (1-7(1+\frac{2}{n}i))\end{align*}
\begin{align*}\frac{2}{n}\sum_{i=1}^{n}f(x_{i}) = \frac{2}{n}\sum_{i=1}^{n}(1-7(1+\frac{2}{n}i))\end{align*}

Considering the question asked for it on a regular partition of intervals, I assumed that meant 3, so I set n=3. Doing this, I get the answer -92/3, however apparently this isn't the correct answer for the lower sum. If I run n up to approach infinity, it goes to -26, which seems right, but that isn't accepted either.

Have I done something terribly wrong? Thanks
 
Physics news on Phys.org
No, a "regular partition" means just that each subinterval has the same length so your $\Delta x= \frac{2}{n}$ is correct.

You have, correctly, \frac{2}{n}\sum_{i=1}^n (1- 7(1+ \frac{2}{n}i). That can be written as $\frac{2}{n}\sum_{i=1}^n (-6 - \frac{14}{n}i)= \frac{-12}{n}\sum_{i=1}^n 1- \frac{28}{n^2}\sum_{i= 1}^n i$.

You know that the sum of "1" from 1 to n, just adding 1 n times, is n and that the sum of "i" from 1 to n is $\frac{1}{2}n(n+ 1)$. So $\frac{-12}{n}\sum_{i=1}^n 1- \frac{28}{n^2}\sum_{i=1}^n i= -12- 14- \frac{14}{n}= -26- \frac{14}{n}$. As n goes to infinity, that limit is -26 which is the correct answer for the integral:
$\int_1^3 1- 7x dx= \left[x- \frac{7}{2}x^2\right]_1^3= 3- \frac{63}{2}- 1+ \frac{7}{2}= 2- \frac{56}{2}= 2- 28= -26$.

However, after re-reading your post you appear to have misunderstood what is asked. The problem asks you to "calculate the upper and lower sums". You must give two answers. The "upper sum" is from i= 1 to n while the "lower sum" is the same but taken from i= 0 to n- 1. The upper sum is what I calculated above, $-26- \frac{14}{n}$.
 
Last edited:
Country Boy said:
No, a "regular partition" means just that each subinterval has the same length so your $\Delta x= \frac{2}{n}$ is correct.

You have, correctly, \frac{2}{n}\sum_{i=1}^n (1- 7(1+ \frac{2}{n}i). That can be written as $\frac{2}{n}\sum_{i=1}^n (-6 - \frac{14}{n}i)= \frac{-12}{n}\sum_{i=1}^n 1- \frac{28}{n^2}\sum_{i= 1}^n i$.

You know that the sum of "1" from 1 to n, just adding 1 n times, is n and that the sum of "i" from 1 to n is $\frac{1}{2}n(n+ 1)$. So $\frac{-12}{n}\sum_{i=1}^n 1- \frac{28}{n^2}\sum_{i=1}^n i= -12- 14- \frac{14}{n}= -26- \frac{14}{n}$. As n goes to infinity, that limit is -26 which is the correct answer for the integral:
$\int_1^3 1- 7x dx= \left[x- \frac{7}{2}x^2\right]_1^3= 3- \frac{63}{2}- 1+ \frac{7}{2}= 2- \frac{56}{2}= 2- 28= -26$.

However, after re-reading your post you appear to have misunderstood what is asked. The problem asks you to "calculate the upper and lower sums". You must give two answers. The "upper sum" is from i= 1 to n while the "lower sum" is the same but taken from i= 0 to n- 1. The upper sum is what I calculated above, $-26- \frac{14}{n}$.

Thanks man, I really appreciate the help. Yes, there were two separate answers to give. I guess I didn't mention that part. It turns out what was giving me the trouble was that they wanted an algebraic solution, where n was not assigned any number at all. Why that wasn't stated, I don't know. It ended up being $\frac{14}{n}-26$ for the upper sum and $-\frac{14}{n}-26$ for the lower sum, which is what you came up with.

Thanks again :)
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
6
Views
2K