MHB Definite Integral ∫xe^(ax)cos(x)dx

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Evaluate the following:

$$I=\int_0^{\infty} xe^{ax}\cos(x)\,dx$$ where $a<0$
 
Mathematics news on Phys.org
My attempt:

My result:

\[\int_{0}^{\infty}xe^{ax}\cos xdx = \frac{a^2-1}{(a^2+1)^2}, \;\;\; a < 0.\]

The solution is obtained by integration by parts several times:

\[I = \int_{0}^{\infty}xe^{ax}\cos xdx = \underbrace{\left [ xe^{ax}\sin x \right ]_0^\infty}_{0} - \int_{0}^{\infty}e^{ax}(1+ax)\sin xdx \\\\ = \underbrace{\int_{0}^{\infty}e^{ax}(-\sin x)dx}_{=I_1}+\underbrace{a\int_{0}^{\infty}xe^{ax}(-\sin x)dx}_{=I_2}\]

Solve the first of the two integrals, $I_1$, in the sum:

\[I_1 = \int_{0}^{\infty}e^{ax}(-\sin x)dx = \underbrace{\left [ e^{ax}\cos x \right ]_0^\infty}_{=-1}-a\int_{0}^{\infty}e^{ax} \cos xdx \\\\ =-1-a\left ( \underbrace{\left [ e^{ax}\sin x \right ]_0^\infty}_{0}-a\int_{0}^{\infty}e^{ax}\sin xdx \right ) = -1 -a^2\int_{0}^{\infty}e^{ax}(-\sin x)dx = -1 -a^2I_1\\\\ \Rightarrow (a^2+1)I_1 = -1 \Rightarrow I_1 = -\frac{1}{a^2+1}\]

The second integral, $I_2$:

\[I_2 = a\int_{0}^{\infty}xe^{ax}(-\sin x)dx = a\left (\underbrace{\left [ xe^{ax}\cos x \right ]_0^\infty}_0- \int_{0}^{\infty}e^{ax}(1+ax)\cos xdx \right ) \\\\ = a\left ( -\int_{0}^{\infty}e^{ax}\cos xdx -a\int_{0}^{\infty}xe^{ax}\cos xdx\right ) \\\\ =-a\left ( \underbrace{\left [ e^{ax}\sin x \right ]_0^\infty}_0+a\int_{0}^{\infty}e^{ax}(-\sin x)dx \right )-a^2I \\\\ = -a^2I_1-a^2I\]Finally, we get:

\[I = I_1 + I_2 = -\frac{1}{a^2+1} +\frac{a^2}{a^2+1} -a^2I \\\\ \Rightarrow I = \frac{a^2-1}{(a^2+1)^2}\]
 
My attempt:

Let $$I(a) = \int_0^{\infty} e^{ax} \cos(x) \, dx$$ for $$a < 0$$. Then

$$\begin{aligned} \dfrac{d}{da} I(a) & = \dfrac{d}{da} \int_0^{\infty} e^{ax} \cos(x) \, dx \\ & = \int_0^{\infty} \dfrac{\partial}{\partial a} (e^{ax} \cos(x) ) \, dx \\ & = \int_0^{\infty} x e^{ax} \cos(x) \, dx. \end{aligned}$$

Thus, if we compute $$I(a)$$ in terms of $$a$$ the result follows by differentiation. Let $$A = \int_0^{\infty} e^{ax} \cdot e^{ix} \, dx$$. We have

$$\begin{aligned} A & = \int_0^{\infty} e^{(a+i)x} \, dx \\ & = \dfrac{e^{(a+i)x}}{a+i} \bigg\vert_0^{\infty} \\ & = - \dfrac{1}{a+i} \\ & = - \dfrac{a}{a^2+1} + \dfrac{i}{a^2+1}. \end{aligned}$$

Since $$e^{ix} = \cos(x) + i \sin(x)$$ we obtain

$$I(a) = \operatorname{Re} \left( \int_0^{\infty} e^{ax} \cdot e^{ix} \, dx \right) = - \dfrac{a}{a^2+1}.$$

Thus

$$\dfrac{d}{da} I(a) = \int_0^{\infty} x e^{ax} \cos(x) \, dx = \dfrac{d}{da} \left( - \dfrac{a}{a^2+1} \right) = \dfrac{a^2 -1}{(a^2+1)^2}.$$
 
My attempt:

Let $$I = \int_0^{\infty}xe^{ax}\cos x dx = - \int_0^{\infty} -x \cdot e^{ax}\cos x dx$$.

Now the last part is the Laplace transform of cosine:

$$\int_0^{\infty}e^{ax}\cos x dx = \mathcal{L}\{\cos x\} = \frac{a}{a² + 1}$$.

Using the properties of Laplace transform (function times variable) we further obtain

$$I = - \frac{d}{da} \frac{a}{a² + 1} = \frac{a^2 - 1}{(a^2 + 1)^2}$$.
 
Thanks everyone for all the varied methods! (Yes)

Here's the method I chose:

We are given to evaluate:

$$I=\int_0^{\infty} xe^{ax}\cos(x)\,dx$$ where $a<0$

I would write:

$$v(x)=\int xe^{ax}\cos(x)\,dx$$

So that we have the first-order linear inhomogeneous ODE:

$$\d{v}{x}=xe^{ax}\cos(x)$$

Since the homogeneous solution $v_h$ is a constant, we need only find the particular solution, which will have the form:

$$v_p(x)=e^{ax}\left((Ax+B)\cos(x)+(Cx+D)\sin(x)\right)$$

Differentiating w.r.t $x$, and substituting into our ODE, we obtain:

$$\d{v_p}{x}=e^{ax}\left(((aA+C)x+aB+A+D)\cos(x)+((aC-A)x+aD-B+C)\sin(x)\right)=e^{ax}\left((1x+0)\cos(x)+(0x+0)\sin(x)\right)$$

Equating coefficients gives rise to the system:

$$aA+C=1$$

$$aB+A+D=0$$

$$aC-A=0$$

$$aD-B+C=0$$

Solving this system, we obtain:

$$(A,B,C,D)=\left(\frac{a}{a^2+1},\frac{1-a^2}{\left(a^2+1\right)^2},\frac{1}{a^2+1},-\frac{2a}{\left(a^2+1\right)^2}\right)$$

And so, our particular solution may be written:

$$v_p(x)=\frac{e^{ax}}{\left(a^2+1\right)^2}\left((a\left(a^2+1\right)x+1-a^2)\cos(x)+(\left(a^2+1\right)x-2a)\sin(x)\right)$$

Hence, the definite integral in question may be written:

$$I=\frac{1}{\left(a^2+1\right)^2}\lim_{t\to\infty}\left(\left(e^{at}\left((a\left(a^2+1\right)t+1-a^2)\cos(t)+(\left(a^2+1\right)t-2a)\sin(t)\right)\right)-\left(e^{a(0)}\left((a\left(a^2+1\right)(0)+1-a^2)\cos(0)+(\left(a^2+1\right)(0)-2a)\sin(0)\right)\right)\right)$$

$$I=\frac{1}{\left(a^2+1\right)^2}\lim_{t\to\infty}\left(\left(e^{at}\left((a\left(a^2+1\right)t+1-a^2)\cos(t)+(\left(a^2+1\right)t-2a)\sin(t)\right)\right)-\left((1-a^2)\right)\right)=\frac{a^2-1}{\left(a^2+1\right)^2}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
2
Views
2K
Replies
10
Views
2K
Replies
2
Views
2K
Replies
13
Views
2K
Replies
11
Views
2K
Back
Top