MHB Definite Integral ∫xe^(ax)cos(x)dx

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Evaluate the following:

$$I=\int_0^{\infty} xe^{ax}\cos(x)\,dx$$ where $a<0$
 
Mathematics news on Phys.org
My attempt:

My result:

\[\int_{0}^{\infty}xe^{ax}\cos xdx = \frac{a^2-1}{(a^2+1)^2}, \;\;\; a < 0.\]

The solution is obtained by integration by parts several times:

\[I = \int_{0}^{\infty}xe^{ax}\cos xdx = \underbrace{\left [ xe^{ax}\sin x \right ]_0^\infty}_{0} - \int_{0}^{\infty}e^{ax}(1+ax)\sin xdx \\\\ = \underbrace{\int_{0}^{\infty}e^{ax}(-\sin x)dx}_{=I_1}+\underbrace{a\int_{0}^{\infty}xe^{ax}(-\sin x)dx}_{=I_2}\]

Solve the first of the two integrals, $I_1$, in the sum:

\[I_1 = \int_{0}^{\infty}e^{ax}(-\sin x)dx = \underbrace{\left [ e^{ax}\cos x \right ]_0^\infty}_{=-1}-a\int_{0}^{\infty}e^{ax} \cos xdx \\\\ =-1-a\left ( \underbrace{\left [ e^{ax}\sin x \right ]_0^\infty}_{0}-a\int_{0}^{\infty}e^{ax}\sin xdx \right ) = -1 -a^2\int_{0}^{\infty}e^{ax}(-\sin x)dx = -1 -a^2I_1\\\\ \Rightarrow (a^2+1)I_1 = -1 \Rightarrow I_1 = -\frac{1}{a^2+1}\]

The second integral, $I_2$:

\[I_2 = a\int_{0}^{\infty}xe^{ax}(-\sin x)dx = a\left (\underbrace{\left [ xe^{ax}\cos x \right ]_0^\infty}_0- \int_{0}^{\infty}e^{ax}(1+ax)\cos xdx \right ) \\\\ = a\left ( -\int_{0}^{\infty}e^{ax}\cos xdx -a\int_{0}^{\infty}xe^{ax}\cos xdx\right ) \\\\ =-a\left ( \underbrace{\left [ e^{ax}\sin x \right ]_0^\infty}_0+a\int_{0}^{\infty}e^{ax}(-\sin x)dx \right )-a^2I \\\\ = -a^2I_1-a^2I\]Finally, we get:

\[I = I_1 + I_2 = -\frac{1}{a^2+1} +\frac{a^2}{a^2+1} -a^2I \\\\ \Rightarrow I = \frac{a^2-1}{(a^2+1)^2}\]
 
My attempt:

Let $$I(a) = \int_0^{\infty} e^{ax} \cos(x) \, dx$$ for $$a < 0$$. Then

$$\begin{aligned} \dfrac{d}{da} I(a) & = \dfrac{d}{da} \int_0^{\infty} e^{ax} \cos(x) \, dx \\ & = \int_0^{\infty} \dfrac{\partial}{\partial a} (e^{ax} \cos(x) ) \, dx \\ & = \int_0^{\infty} x e^{ax} \cos(x) \, dx. \end{aligned}$$

Thus, if we compute $$I(a)$$ in terms of $$a$$ the result follows by differentiation. Let $$A = \int_0^{\infty} e^{ax} \cdot e^{ix} \, dx$$. We have

$$\begin{aligned} A & = \int_0^{\infty} e^{(a+i)x} \, dx \\ & = \dfrac{e^{(a+i)x}}{a+i} \bigg\vert_0^{\infty} \\ & = - \dfrac{1}{a+i} \\ & = - \dfrac{a}{a^2+1} + \dfrac{i}{a^2+1}. \end{aligned}$$

Since $$e^{ix} = \cos(x) + i \sin(x)$$ we obtain

$$I(a) = \operatorname{Re} \left( \int_0^{\infty} e^{ax} \cdot e^{ix} \, dx \right) = - \dfrac{a}{a^2+1}.$$

Thus

$$\dfrac{d}{da} I(a) = \int_0^{\infty} x e^{ax} \cos(x) \, dx = \dfrac{d}{da} \left( - \dfrac{a}{a^2+1} \right) = \dfrac{a^2 -1}{(a^2+1)^2}.$$
 
My attempt:

Let $$I = \int_0^{\infty}xe^{ax}\cos x dx = - \int_0^{\infty} -x \cdot e^{ax}\cos x dx$$.

Now the last part is the Laplace transform of cosine:

$$\int_0^{\infty}e^{ax}\cos x dx = \mathcal{L}\{\cos x\} = \frac{a}{a² + 1}$$.

Using the properties of Laplace transform (function times variable) we further obtain

$$I = - \frac{d}{da} \frac{a}{a² + 1} = \frac{a^2 - 1}{(a^2 + 1)^2}$$.
 
Thanks everyone for all the varied methods! (Yes)

Here's the method I chose:

We are given to evaluate:

$$I=\int_0^{\infty} xe^{ax}\cos(x)\,dx$$ where $a<0$

I would write:

$$v(x)=\int xe^{ax}\cos(x)\,dx$$

So that we have the first-order linear inhomogeneous ODE:

$$\d{v}{x}=xe^{ax}\cos(x)$$

Since the homogeneous solution $v_h$ is a constant, we need only find the particular solution, which will have the form:

$$v_p(x)=e^{ax}\left((Ax+B)\cos(x)+(Cx+D)\sin(x)\right)$$

Differentiating w.r.t $x$, and substituting into our ODE, we obtain:

$$\d{v_p}{x}=e^{ax}\left(((aA+C)x+aB+A+D)\cos(x)+((aC-A)x+aD-B+C)\sin(x)\right)=e^{ax}\left((1x+0)\cos(x)+(0x+0)\sin(x)\right)$$

Equating coefficients gives rise to the system:

$$aA+C=1$$

$$aB+A+D=0$$

$$aC-A=0$$

$$aD-B+C=0$$

Solving this system, we obtain:

$$(A,B,C,D)=\left(\frac{a}{a^2+1},\frac{1-a^2}{\left(a^2+1\right)^2},\frac{1}{a^2+1},-\frac{2a}{\left(a^2+1\right)^2}\right)$$

And so, our particular solution may be written:

$$v_p(x)=\frac{e^{ax}}{\left(a^2+1\right)^2}\left((a\left(a^2+1\right)x+1-a^2)\cos(x)+(\left(a^2+1\right)x-2a)\sin(x)\right)$$

Hence, the definite integral in question may be written:

$$I=\frac{1}{\left(a^2+1\right)^2}\lim_{t\to\infty}\left(\left(e^{at}\left((a\left(a^2+1\right)t+1-a^2)\cos(t)+(\left(a^2+1\right)t-2a)\sin(t)\right)\right)-\left(e^{a(0)}\left((a\left(a^2+1\right)(0)+1-a^2)\cos(0)+(\left(a^2+1\right)(0)-2a)\sin(0)\right)\right)\right)$$

$$I=\frac{1}{\left(a^2+1\right)^2}\lim_{t\to\infty}\left(\left(e^{at}\left((a\left(a^2+1\right)t+1-a^2)\cos(t)+(\left(a^2+1\right)t-2a)\sin(t)\right)\right)-\left((1-a^2)\right)\right)=\frac{a^2-1}{\left(a^2+1\right)^2}$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
2
Views
2K
Replies
10
Views
2K
Replies
2
Views
2K
Replies
13
Views
2K
Replies
11
Views
2K
Back
Top