MHB Definite Integral ∫xe^(ax)cos(x)dx

Click For Summary
The integral I = ∫₀^{∞} xe^(ax)cos(x)dx is evaluated for a < 0. Various methods were discussed, highlighting different approaches to solving the integral. The chosen method focuses on integrating by parts and using properties of Laplace transforms. Participants shared insights on convergence and the implications of the parameter a. The discussion emphasizes the importance of careful handling of limits and conditions for convergence in improper integrals.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Evaluate the following:

$$I=\int_0^{\infty} xe^{ax}\cos(x)\,dx$$ where $a<0$
 
Mathematics news on Phys.org
My attempt:

My result:

\[\int_{0}^{\infty}xe^{ax}\cos xdx = \frac{a^2-1}{(a^2+1)^2}, \;\;\; a < 0.\]

The solution is obtained by integration by parts several times:

\[I = \int_{0}^{\infty}xe^{ax}\cos xdx = \underbrace{\left [ xe^{ax}\sin x \right ]_0^\infty}_{0} - \int_{0}^{\infty}e^{ax}(1+ax)\sin xdx \\\\ = \underbrace{\int_{0}^{\infty}e^{ax}(-\sin x)dx}_{=I_1}+\underbrace{a\int_{0}^{\infty}xe^{ax}(-\sin x)dx}_{=I_2}\]

Solve the first of the two integrals, $I_1$, in the sum:

\[I_1 = \int_{0}^{\infty}e^{ax}(-\sin x)dx = \underbrace{\left [ e^{ax}\cos x \right ]_0^\infty}_{=-1}-a\int_{0}^{\infty}e^{ax} \cos xdx \\\\ =-1-a\left ( \underbrace{\left [ e^{ax}\sin x \right ]_0^\infty}_{0}-a\int_{0}^{\infty}e^{ax}\sin xdx \right ) = -1 -a^2\int_{0}^{\infty}e^{ax}(-\sin x)dx = -1 -a^2I_1\\\\ \Rightarrow (a^2+1)I_1 = -1 \Rightarrow I_1 = -\frac{1}{a^2+1}\]

The second integral, $I_2$:

\[I_2 = a\int_{0}^{\infty}xe^{ax}(-\sin x)dx = a\left (\underbrace{\left [ xe^{ax}\cos x \right ]_0^\infty}_0- \int_{0}^{\infty}e^{ax}(1+ax)\cos xdx \right ) \\\\ = a\left ( -\int_{0}^{\infty}e^{ax}\cos xdx -a\int_{0}^{\infty}xe^{ax}\cos xdx\right ) \\\\ =-a\left ( \underbrace{\left [ e^{ax}\sin x \right ]_0^\infty}_0+a\int_{0}^{\infty}e^{ax}(-\sin x)dx \right )-a^2I \\\\ = -a^2I_1-a^2I\]Finally, we get:

\[I = I_1 + I_2 = -\frac{1}{a^2+1} +\frac{a^2}{a^2+1} -a^2I \\\\ \Rightarrow I = \frac{a^2-1}{(a^2+1)^2}\]
 
My attempt:

Let $$I(a) = \int_0^{\infty} e^{ax} \cos(x) \, dx$$ for $$a < 0$$. Then

$$\begin{aligned} \dfrac{d}{da} I(a) & = \dfrac{d}{da} \int_0^{\infty} e^{ax} \cos(x) \, dx \\ & = \int_0^{\infty} \dfrac{\partial}{\partial a} (e^{ax} \cos(x) ) \, dx \\ & = \int_0^{\infty} x e^{ax} \cos(x) \, dx. \end{aligned}$$

Thus, if we compute $$I(a)$$ in terms of $$a$$ the result follows by differentiation. Let $$A = \int_0^{\infty} e^{ax} \cdot e^{ix} \, dx$$. We have

$$\begin{aligned} A & = \int_0^{\infty} e^{(a+i)x} \, dx \\ & = \dfrac{e^{(a+i)x}}{a+i} \bigg\vert_0^{\infty} \\ & = - \dfrac{1}{a+i} \\ & = - \dfrac{a}{a^2+1} + \dfrac{i}{a^2+1}. \end{aligned}$$

Since $$e^{ix} = \cos(x) + i \sin(x)$$ we obtain

$$I(a) = \operatorname{Re} \left( \int_0^{\infty} e^{ax} \cdot e^{ix} \, dx \right) = - \dfrac{a}{a^2+1}.$$

Thus

$$\dfrac{d}{da} I(a) = \int_0^{\infty} x e^{ax} \cos(x) \, dx = \dfrac{d}{da} \left( - \dfrac{a}{a^2+1} \right) = \dfrac{a^2 -1}{(a^2+1)^2}.$$
 
My attempt:

Let $$I = \int_0^{\infty}xe^{ax}\cos x dx = - \int_0^{\infty} -x \cdot e^{ax}\cos x dx$$.

Now the last part is the Laplace transform of cosine:

$$\int_0^{\infty}e^{ax}\cos x dx = \mathcal{L}\{\cos x\} = \frac{a}{a² + 1}$$.

Using the properties of Laplace transform (function times variable) we further obtain

$$I = - \frac{d}{da} \frac{a}{a² + 1} = \frac{a^2 - 1}{(a^2 + 1)^2}$$.
 
Thanks everyone for all the varied methods! (Yes)

Here's the method I chose:

We are given to evaluate:

$$I=\int_0^{\infty} xe^{ax}\cos(x)\,dx$$ where $a<0$

I would write:

$$v(x)=\int xe^{ax}\cos(x)\,dx$$

So that we have the first-order linear inhomogeneous ODE:

$$\d{v}{x}=xe^{ax}\cos(x)$$

Since the homogeneous solution $v_h$ is a constant, we need only find the particular solution, which will have the form:

$$v_p(x)=e^{ax}\left((Ax+B)\cos(x)+(Cx+D)\sin(x)\right)$$

Differentiating w.r.t $x$, and substituting into our ODE, we obtain:

$$\d{v_p}{x}=e^{ax}\left(((aA+C)x+aB+A+D)\cos(x)+((aC-A)x+aD-B+C)\sin(x)\right)=e^{ax}\left((1x+0)\cos(x)+(0x+0)\sin(x)\right)$$

Equating coefficients gives rise to the system:

$$aA+C=1$$

$$aB+A+D=0$$

$$aC-A=0$$

$$aD-B+C=0$$

Solving this system, we obtain:

$$(A,B,C,D)=\left(\frac{a}{a^2+1},\frac{1-a^2}{\left(a^2+1\right)^2},\frac{1}{a^2+1},-\frac{2a}{\left(a^2+1\right)^2}\right)$$

And so, our particular solution may be written:

$$v_p(x)=\frac{e^{ax}}{\left(a^2+1\right)^2}\left((a\left(a^2+1\right)x+1-a^2)\cos(x)+(\left(a^2+1\right)x-2a)\sin(x)\right)$$

Hence, the definite integral in question may be written:

$$I=\frac{1}{\left(a^2+1\right)^2}\lim_{t\to\infty}\left(\left(e^{at}\left((a\left(a^2+1\right)t+1-a^2)\cos(t)+(\left(a^2+1\right)t-2a)\sin(t)\right)\right)-\left(e^{a(0)}\left((a\left(a^2+1\right)(0)+1-a^2)\cos(0)+(\left(a^2+1\right)(0)-2a)\sin(0)\right)\right)\right)$$

$$I=\frac{1}{\left(a^2+1\right)^2}\lim_{t\to\infty}\left(\left(e^{at}\left((a\left(a^2+1\right)t+1-a^2)\cos(t)+(\left(a^2+1\right)t-2a)\sin(t)\right)\right)-\left((1-a^2)\right)\right)=\frac{a^2-1}{\left(a^2+1\right)^2}$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K