Definite Integral ∫xe^(ax)cos(x)dx

Click For Summary

Discussion Overview

The discussion centers around the evaluation of the definite integral $$I=\int_0^{\infty} xe^{ax}\cos(x)\,dx$$ with the condition that $a<0$. Participants explore various methods and approaches to solve this integral.

Discussion Character

  • Exploratory, Mathematical reasoning

Main Points Raised

  • Some participants present their attempts at solving the integral, though specific methods are not detailed in the provided posts.
  • One participant expresses gratitude for the diverse methods shared by others, indicating a variety of approaches have been discussed.

Areas of Agreement / Disagreement

The discussion does not indicate a consensus on a single method or solution, as multiple attempts and methods are presented without resolution.

Contextual Notes

Participants' attempts may depend on specific mathematical techniques or assumptions that are not fully articulated in the posts.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Evaluate the following:

$$I=\int_0^{\infty} xe^{ax}\cos(x)\,dx$$ where $a<0$
 
Physics news on Phys.org
My attempt:

My result:

\[\int_{0}^{\infty}xe^{ax}\cos xdx = \frac{a^2-1}{(a^2+1)^2}, \;\;\; a < 0.\]

The solution is obtained by integration by parts several times:

\[I = \int_{0}^{\infty}xe^{ax}\cos xdx = \underbrace{\left [ xe^{ax}\sin x \right ]_0^\infty}_{0} - \int_{0}^{\infty}e^{ax}(1+ax)\sin xdx \\\\ = \underbrace{\int_{0}^{\infty}e^{ax}(-\sin x)dx}_{=I_1}+\underbrace{a\int_{0}^{\infty}xe^{ax}(-\sin x)dx}_{=I_2}\]

Solve the first of the two integrals, $I_1$, in the sum:

\[I_1 = \int_{0}^{\infty}e^{ax}(-\sin x)dx = \underbrace{\left [ e^{ax}\cos x \right ]_0^\infty}_{=-1}-a\int_{0}^{\infty}e^{ax} \cos xdx \\\\ =-1-a\left ( \underbrace{\left [ e^{ax}\sin x \right ]_0^\infty}_{0}-a\int_{0}^{\infty}e^{ax}\sin xdx \right ) = -1 -a^2\int_{0}^{\infty}e^{ax}(-\sin x)dx = -1 -a^2I_1\\\\ \Rightarrow (a^2+1)I_1 = -1 \Rightarrow I_1 = -\frac{1}{a^2+1}\]

The second integral, $I_2$:

\[I_2 = a\int_{0}^{\infty}xe^{ax}(-\sin x)dx = a\left (\underbrace{\left [ xe^{ax}\cos x \right ]_0^\infty}_0- \int_{0}^{\infty}e^{ax}(1+ax)\cos xdx \right ) \\\\ = a\left ( -\int_{0}^{\infty}e^{ax}\cos xdx -a\int_{0}^{\infty}xe^{ax}\cos xdx\right ) \\\\ =-a\left ( \underbrace{\left [ e^{ax}\sin x \right ]_0^\infty}_0+a\int_{0}^{\infty}e^{ax}(-\sin x)dx \right )-a^2I \\\\ = -a^2I_1-a^2I\]Finally, we get:

\[I = I_1 + I_2 = -\frac{1}{a^2+1} +\frac{a^2}{a^2+1} -a^2I \\\\ \Rightarrow I = \frac{a^2-1}{(a^2+1)^2}\]
 
My attempt:

Let $$I(a) = \int_0^{\infty} e^{ax} \cos(x) \, dx$$ for $$a < 0$$. Then

$$\begin{aligned} \dfrac{d}{da} I(a) & = \dfrac{d}{da} \int_0^{\infty} e^{ax} \cos(x) \, dx \\ & = \int_0^{\infty} \dfrac{\partial}{\partial a} (e^{ax} \cos(x) ) \, dx \\ & = \int_0^{\infty} x e^{ax} \cos(x) \, dx. \end{aligned}$$

Thus, if we compute $$I(a)$$ in terms of $$a$$ the result follows by differentiation. Let $$A = \int_0^{\infty} e^{ax} \cdot e^{ix} \, dx$$. We have

$$\begin{aligned} A & = \int_0^{\infty} e^{(a+i)x} \, dx \\ & = \dfrac{e^{(a+i)x}}{a+i} \bigg\vert_0^{\infty} \\ & = - \dfrac{1}{a+i} \\ & = - \dfrac{a}{a^2+1} + \dfrac{i}{a^2+1}. \end{aligned}$$

Since $$e^{ix} = \cos(x) + i \sin(x)$$ we obtain

$$I(a) = \operatorname{Re} \left( \int_0^{\infty} e^{ax} \cdot e^{ix} \, dx \right) = - \dfrac{a}{a^2+1}.$$

Thus

$$\dfrac{d}{da} I(a) = \int_0^{\infty} x e^{ax} \cos(x) \, dx = \dfrac{d}{da} \left( - \dfrac{a}{a^2+1} \right) = \dfrac{a^2 -1}{(a^2+1)^2}.$$
 
My attempt:

Let $$I = \int_0^{\infty}xe^{ax}\cos x dx = - \int_0^{\infty} -x \cdot e^{ax}\cos x dx$$.

Now the last part is the Laplace transform of cosine:

$$\int_0^{\infty}e^{ax}\cos x dx = \mathcal{L}\{\cos x\} = \frac{a}{a² + 1}$$.

Using the properties of Laplace transform (function times variable) we further obtain

$$I = - \frac{d}{da} \frac{a}{a² + 1} = \frac{a^2 - 1}{(a^2 + 1)^2}$$.
 
Thanks everyone for all the varied methods! (Yes)

Here's the method I chose:

We are given to evaluate:

$$I=\int_0^{\infty} xe^{ax}\cos(x)\,dx$$ where $a<0$

I would write:

$$v(x)=\int xe^{ax}\cos(x)\,dx$$

So that we have the first-order linear inhomogeneous ODE:

$$\d{v}{x}=xe^{ax}\cos(x)$$

Since the homogeneous solution $v_h$ is a constant, we need only find the particular solution, which will have the form:

$$v_p(x)=e^{ax}\left((Ax+B)\cos(x)+(Cx+D)\sin(x)\right)$$

Differentiating w.r.t $x$, and substituting into our ODE, we obtain:

$$\d{v_p}{x}=e^{ax}\left(((aA+C)x+aB+A+D)\cos(x)+((aC-A)x+aD-B+C)\sin(x)\right)=e^{ax}\left((1x+0)\cos(x)+(0x+0)\sin(x)\right)$$

Equating coefficients gives rise to the system:

$$aA+C=1$$

$$aB+A+D=0$$

$$aC-A=0$$

$$aD-B+C=0$$

Solving this system, we obtain:

$$(A,B,C,D)=\left(\frac{a}{a^2+1},\frac{1-a^2}{\left(a^2+1\right)^2},\frac{1}{a^2+1},-\frac{2a}{\left(a^2+1\right)^2}\right)$$

And so, our particular solution may be written:

$$v_p(x)=\frac{e^{ax}}{\left(a^2+1\right)^2}\left((a\left(a^2+1\right)x+1-a^2)\cos(x)+(\left(a^2+1\right)x-2a)\sin(x)\right)$$

Hence, the definite integral in question may be written:

$$I=\frac{1}{\left(a^2+1\right)^2}\lim_{t\to\infty}\left(\left(e^{at}\left((a\left(a^2+1\right)t+1-a^2)\cos(t)+(\left(a^2+1\right)t-2a)\sin(t)\right)\right)-\left(e^{a(0)}\left((a\left(a^2+1\right)(0)+1-a^2)\cos(0)+(\left(a^2+1\right)(0)-2a)\sin(0)\right)\right)\right)$$

$$I=\frac{1}{\left(a^2+1\right)^2}\lim_{t\to\infty}\left(\left(e^{at}\left((a\left(a^2+1\right)t+1-a^2)\cos(t)+(\left(a^2+1\right)t-2a)\sin(t)\right)\right)-\left((1-a^2)\right)\right)=\frac{a^2-1}{\left(a^2+1\right)^2}$$
 

Similar threads

  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
5
Views
3K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K