MHB Degree of Freedom: Maths Definition & Differential Equations

AI Thread Summary
The degree of freedom in mathematics, particularly in differential equations, refers to the number of independent values that can be chosen in a problem. This concept varies based on the specific scenario being analyzed. For instance, a bead on a circular frame has one degree of freedom due to the dependency between its x and y coordinates. In contrast, a point on a plane has two degrees of freedom, while a point in three-dimensional space has three. Additionally, a projectile's trajectory in three-dimensional space is considered one-dimensional since its position is determined by a single variable, time.
anum
Messages
6
Reaction score
0
what is meant by the degree of freedom in Mathematics? Especially in the differential equations.
 
Mathematics news on Phys.org
It depend a lot on the specific problem. Generally, "the degrees of freedom" are the number of values that can be arbitrarily, and independently, chosen in a problem. For example, if you have a bead moving on a circular frame, each point has an (x, y) coordinate but since the point must lie on a circle, x and y are not independent- given either x or y we can calculate the other so this problem has one degree of freedom. A point that can lie anywhere on a given plane has three two degrees of freedom because a plane is two dimensional. A point that can be anywhere in three dimensional space has three degrees of freedom. On the other hand, a "projectile" problem, where an object is launched along some trajectory in three dimensional space is one dimensional since the (x, y, z) position of the projectile is determined by the single variable, t, the time.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top