MHB Degrees of a Field Extension: How to Find Basis and Degree of a Field Extension

shmounal
Messages
3
Reaction score
0
Hi,

I've been asked to find $[ \mathbb{Q}(\sqrt{2}, i ): \mathbb{Q} ]$, and to write down a basis.

Now I know that $[ \mathbb{Q}(\sqrt{2}, i ): \mathbb{Q} ] = 4$, and that a basis could be $ \left \{ 1, i, \sqrt{2}, i\sqrt{2}\right \} $ it is whether the way I am explaining how I arrived here is satisfactory explanation.

Utilising the tower law I want to find both $[ \mathbb{Q}(\sqrt{2}, i ): \mathbb{Q(\sqrt{2})} ]$ and $[ \mathbb{Q}(\sqrt{2}): \mathbb{Q} ]$ and multiply.

For $[ \mathbb{Q}(\sqrt{2}): \mathbb{Q} ] = 2$ as $\mathbb{Q}(\sqrt{2}) = [a+b\sqrt{2} | a,b \in \mathbb{Q}]$ so $\mathbb{Q}(\sqrt{2})$ is a 2d vector space over $\mathbb{Q}$ with basis $\left \{1, \sqrt{2}\right \}$

I then use a similar argument for $[ \mathbb{Q}(\sqrt{2}, i ): \mathbb{Q(\sqrt{2})} ] = 2$ in that $\mathbb{Q}(i)(\sqrt{2}) = [a+bi | a,b \in \mathbb{Q(\sqrt{2})}]$

and the rest follows. I'm not sure if this is enough to show it rigidly. Some of my friends have been using minimal polynomials to show the different degrees and I don't entirely follow the logic!

Any help appreciated!

xx
 
Physics news on Phys.org
shmounal said:
Some of my friends have been using minimal polynomials to show the different degrees and I don't entirely follow the logic!

Certainly you should justify why $[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2$ . As $\sqrt{2}\not\in \mathbb{Q}$ , then $[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]>1$ , but $p(x)=x^2-2\in\mathbb{Q}[x]$ satisfies $p(\sqrt{2})=0$ , so $p(x)$ is the minimal polynomial of $\sqrt{2}$ and a basis of $\mathbb{Q}(\sqrt{2})$ over the field $\mathbb{Q}$ is $\{(\sqrt{2})^0,(\sqrt{2})^1\}=\{1,\sqrt{2}\}$ . In the same way , $i\not\in\mathbb{Q}(\sqrt{2})$ , then ...
 
Last edited:
Thanks for the help! Think I understand now.

What I was doing only showed that the degree was 2 or more while finding the min polynomial says it must be exactly 2?

i.e. $p(x) = x^2 + 1 \in\mathbb{Q} (\sqrt{2})[x]$ satisfies $p(i) = 0$, ...
 
shmounal said:
What I was doing only showed that the degree was 2 or more while finding the min polynomial says it must be exactly 2?

Right, that is the question.

i.e. $p(x) = x^2 + 1 \in\mathbb{Q} (\sqrt{2})[x]$ satisfies $p(i) = 0$, ...

Also right.
 
another way to show that [Q(√2):Q] = 2 is to show that {1,√2} generate Q(√2), to do this, you need to prove that every element of Q(√2) is of the form a+b√2 (i.e. that the set of all such elements with a,b in Q does indeed form a field, and this field is contained in any field that contains Q and √2).

finding an irreducible polynomial of minimal degree is often easier, because of the isomorphism Q(√2) ≅ Q[x]/(x^2 - 2). note that proving x^2 - 2 is irreducible over Q is the same as showing √2 is irrational, something often glossed over as "obvious" and stated without proof. a similar consideration holds for i, and to be really nit-picky, showing x^2+1 is irreducible over Q(√2)[x] one ought to appeal to the fact that Q(√2) is a sub-field of the reals, which has no square roots of negative numbers (a consequence of being a totally ordered field).

when one has a cubic (or higher) extension, the polynomial approach really shines, because then one knows that successive powers of a root (up to one less than the degree of the minimal polynomial, in this case: 2, since we have a cubic) are linearly independent (or else the root would have a minimal polynomial of lesser degree). so the polynomial itself provides the basis.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K