Density Error Propagation/Significant Figures Based on Extreme Values

  • #1
3
0

Homework Statement


The density of an object is found to be 976 g/L based on mass of 976 +/- 5g and volume of 1 +/- 0.01L.

Determine the error in the density using extreme values (upper limit of mass divided by lower limit of volume, etc)


Homework Equations


I'm having difficulty determining how to factor in significant figures here.

Use D = M / V


The Attempt at a Solution


Upper limit = (976 + 5) / (1 - 0.01)
Lower limit = (976 - 5) / (1 + 0.01)

My reasoning: since the numerator result has 3 significant figures, and the denominator has 1 significant figure (since 1 only has 1sigfig), the resultant densities have 1 sigfig. But this seems to cut off too many figures.
 
  • #2
Not all zeros are insignificant. Calculate both densities using all given digits and decide from those values the number of significant digits of the density.

ehild
 

Suggested for: Density Error Propagation/Significant Figures Based on Extreme Values

Replies
1
Views
414
Replies
12
Views
678
Replies
11
Views
556
Replies
11
Views
246
Replies
3
Views
696
Replies
5
Views
458
Back
Top