Sagittarius A-Star
Science Advisor
- 1,399
- 1,058
Einstein's 1935 derivation of the equivalence of mass and energy:
https://projecteuclid.org/download/pdf_1/euclid.bams/1183498131
From an elastic eccentric collision scenario with 2 particles with equal mass, he derives (using a unit system with ##c=1##), that the relativistic momentum ##m\gamma \vec{v}## and the relativistic kinetic energy ##m(\gamma-1)## of the system are conserved in any inertial reference frame. He makes use of the symmetry in the center-of-momentum frame and the Lorentz-transformation.
Then he considers an inelastic collision between 2 particles with equal mass and equal rest-energy ##E_0##. He derives from the energy law for the system, that ##E_0## and ##m## of the particles change equally, and that therefore
$$E_0=m$$
in ##E=E_0+m(\gamma -1)##.
He concludes:
https://projecteuclid.org/download/pdf_1/euclid.bams/1183498131
From an elastic eccentric collision scenario with 2 particles with equal mass, he derives (using a unit system with ##c=1##), that the relativistic momentum ##m\gamma \vec{v}## and the relativistic kinetic energy ##m(\gamma-1)## of the system are conserved in any inertial reference frame. He makes use of the symmetry in the center-of-momentum frame and the Lorentz-transformation.
Then he considers an inelastic collision between 2 particles with equal mass and equal rest-energy ##E_0##. He derives from the energy law for the system, that ##E_0## and ##m## of the particles change equally, and that therefore
$$E_0=m$$
in ##E=E_0+m(\gamma -1)##.
He concludes:
Einstein (1935) said:If, from the beginning, we had provided the expression for the impulse with a mass-constant different from that of the energy, these considerations would show that the impulse-mass changes in an inelastic collision like the energy-mass. This is a partial justification for setting both mass-constants equal to each other.
The result of this consideration is therefore as follows. If for collisions of material points the conservation laws are to hold for an arbitrary (Lorentz) coordinate-system, the well known expressions for impulse and energy follow, as well as the validity of the principle of equivalence of mass and rest-energy.
Last edited: