A Derivation of energy-momentum tensor in "QFT and the SM" by Schwartz

Click For Summary
The discussion centers on a potential typo in Schwartz's derivation of the energy-momentum tensor in "QFT and the SM," specifically regarding the transition from ##\partial_\nu \mathcal L## to ##g_{\mu \nu} \mathcal L## in equation (3.34). Participants argue that it should instead be ##\delta^{\mu}_{\nu}## due to the conventions used in tensor notation. The confusion arises from Schwartz's unconventional approach to contracting Lorentz tensors, which can lead to ambiguous expressions. It is advised to consult additional resources on quantum field theory to clarify these points and avoid frustration. The conversation highlights the importance of understanding tensor index positions in theoretical physics.
Hill
Messages
735
Reaction score
576
TL;DR
How the contraction leads to ##g_{\mu \nu}## rather than ##\delta_{\mu \nu}##?
My question is about this step in the derivation:
1708892121220.png

When the ##\partial_\nu \mathcal L## in 3.33 moves under the ##\partial_\mu## in 3.34 and gets contracted, I'd expect it to become ##\delta_{\mu \nu} \mathcal L##. Why is it rather ##g_{\mu \nu} \mathcal L## in the 3.34?
(In this text, ##g_{\mu \nu}=\eta_{\mu \nu}##)
 
Physics news on Phys.org
I think that eq.(3.34) contains a typo and you're (nearly) correct: in standard tensor notation, the ##g_{\mu\nu}## in (3.34) should actually be ##\delta^{\mu}_{\nu}##.
 
renormalize said:
I think that eq.(3.34) contains a typo and you're (nearly) correct: in standard tensor notation, the ##g_{\mu\nu}## in (3.34) should actually be ##\delta^{\mu}_{\nu}##.
Yes. The derivative has a lower mu in the denominator and hence acts like an upper index. This means the mu on the metric should also be upper, making it a kronecker delta.
 
Be careful when using this book as Schwartz employs a strange convention for contracting Lorentz tensors - namely, he ignores the positioning of the tensor indices (i.e., whether they are "upper" or "lower" indices), as he explains in this passage:

Zrzut ekranu z 2024-02-25 22-27-37.png


With this convention you get ambiguous expressions such as ##\partial_\mu (g_{\mu\nu} \mathcal{L})##, which you've encountered here, and which are impossible to interpret as they stand. Besides, there is always the possibility of there being a typo in a particular formula. All this can lead to unnecessary frustration, so it is best that you supplement the Schwartz's text with other books on QFT that you can always consult. Never let a textbook gaslight you while studying! :-p
 
  • Like
  • Wow
Likes Demystifier, Hill and jbergman
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
24
Views
3K
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K