Hi,(adsbygoogle = window.adsbygoogle || []).push({});

I'm having some problems with the derivation of the Jacobian determinant when used to describe co-ordinate transformations. As I understand it, the Jacobian determinant should relate the areas defined by two vectors in both co-ordinate systems. As the vectors are not necessarily perpendicular, the area is calculated using the cross-product, giving:

| dx x dy | = J dudv

(Examples of the derivation can be found http://books.google.co.uk/books?id=...obian determinant area cross product&f=false".)

My problem is that dudv is not a cross product and so doesn't describe the area of a parallelogram in the u-v co-ordinate system. So, as far as I can see it, one of three things is happening:

1) du and dv are assumed to be perpendicular, and so the area is just the product of the sides of the rectange, dudv.

2) du and dv are assumed to be very small, so that the area approximates a rectangle

3) there's something funny about dudv that I haven't spotted - it *is* the product of two vectors, which doesn't actually mean anything I guess. Someone mentioned something about it being a wedge or exterior product...

So yeah, any ideas? What am I missing?

Thanks

James

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Derivation of Jacobian Determinant

Loading...

Similar Threads - Derivation Jacobian Determinant | Date |
---|---|

I Derivative and Parameterisation of a Contour Integral | Feb 7, 2018 |

I Why does this concavity function not work for this polar fun | Jan 26, 2018 |

I Euler Lagrange formula with higher derivatives | Jan 24, 2018 |

I Jacobian directional derivative | Mar 16, 2016 |

Derivation of Jacobian | Jun 17, 2005 |

**Physics Forums - The Fusion of Science and Community**