atyy
Science Advisor
- 15,170
- 3,379
Alien8 said:![]()
Shouldn't we be puzzled by this similarity between 1/2 cos2(a-b) and cos2(a-b)? Local theory ended up with (a-b) term even though a and b should be oblivious to one another. It's interesting, the same function only squashed in half. I mean, whatever non-local magic QM describes the mechanics of it is somehow captured by this Malus' law integral.
If I understand stevendaryl's model correctly, this is in fact the quantum mechanical prediction for unentangled pairs, ie. without entanglement quantum mechanics does not violate the Bell inequality, and its predictions can be reproduced by a local theory. A local theory, and quantum mechanics without entanglement, is able to produce correlations between distant locations, because of correlations in the source. The famous example is that if I prepare a pair of socks, each pair having a different random colour, but both socks in a pair having the same colour, and send one to Alice and the other to Bob, they will receive socks with random colours, but their colours will always be correlated. In stevendaryl's example, the orientation of each pair of unentangled photons from the source is random from trial to trial, but within one trial both photons always have the same polarization. So the presence of correlation alone is not enough to rule out a local model. It must be correlation that violates a Bell inequality.
Alien8 said:Are we sure we integrated that right? If it's integrated from 0 to 2Pi but only over 1/Pi then the curve stretches out to cos2(a-b):
http://www5a.wolframalpha.com/Calculate/MSP/MSP140920b44a6h65g2f07h00004d93g0a279789h43?MSPStoreType=image/gif&s=40&w=516.&h=68.
I'm not sure what would that practically mean, but isn't it possible that might actually be the proper way to integrate it?
Yes, stevendaryl integrated it right. You can change the nomalization to ##\frac{1}{\pi}## but you must also change the upper limit of the integral to ##\pi##. In fact, since photon polarizations only vary from ##0## to ##\frac{\pi}{2}##, his integral will work if you normalize with ##\frac{1}{\pi/2}## and change the upper limit to ##\frac{\pi}{2}##.
Last edited by a moderator: