Derivation of the Potential Energy of an Electric Charge System

Click For Summary
SUMMARY

The discussion centers on the derivation of the electrical potential energy (PE) formula, specifically PE = U = kq1q2/r, and its significance in various physics applications. The integral of electrical force (F) over distance (dr) from infinity to a specific point is crucial for understanding potential energy in electrostatics. The relationship between electric potential (V) and potential energy (U) is emphasized, where V = U/q, indicating that knowledge of one allows for the calculation of the other. Understanding these concepts is essential for solving problems related to conservative force fields, including gravity and electrostatics.

PREREQUISITES
  • Understanding of electrostatics and Coulomb's law
  • Familiarity with calculus, specifically integration techniques
  • Knowledge of conservative force fields
  • Basic concepts of electric potential and potential energy
NEXT STEPS
  • Study the derivation of potential energy in conservative force fields
  • Learn about the applications of electric potential in various configurations, such as parallel charged plates
  • Explore the relationship between electric potential and gravitational potential energy
  • Investigate the role of arbitrary constants in potential energy functions
USEFUL FOR

Students preparing for exams in physics, educators teaching electrostatics, and anyone interested in the mathematical foundations of potential energy in electric charge systems.

lorx99
Messages
21
Reaction score
0
Hi,

I learned about how PE = U=kq1q2/r is the electrical potential energy for the system. It is found by taking the integral of electrical force and dr from infinity to the point of location we are interested in.

So that is the intregral(F*dr) from r=inf to r=ro.

My question is that do I need to know to know this work integral for other applications? I know the formula U, so is the derivation of that important for any other physics problems?

I have a exam that includes the topic of work, potential energy, and potential. I'm kinda shaky on how to utilize the work integral for finding U in other cases. On the other hand, the work integral for Potential (V) is integration of E and dr which is useful is many applications cause it will always work (like in parallel charged plates and a point charge).
 
Physics news on Phys.org
Hi lorx99 and welcome to PF.

##V## is the potential energy per unit charge while is just the potential energy. The two are related by ##V = U/q##. If you know ##V## everywhere in space, you can find ##U## everywhere in space. Both are useful depending on what you are being asked to do. If you know one, you can find the other. Electrostatic potential ##V## is equivalent to ##gh## and electrostatic potential energy ##U## is equivalent to ##mgh## in the following sense: You can find the gravitational potential energy of any mass ##m## in a region of space by multiplying ##gh## by the mass ##m## that you bring in that region of space. Likewise, you can find the electrostatic potential energy ##U## of any charge ##q## in a region of space by multiplying ##V## by the charge ##q## that you bring in that region of space. It's really one integral. Yes, you have to know it. As an educator, I cannot tell you that it's OK not to know something. A word of caution: the equation you quoted, ##U=kq_1q_2/r## is the potential energy of two point charges separated by distance ##r## and applies to that case only and not any other case.
 
lorx99 said:
My question is that do I need to know to know this work integral for other applications? I know the formula U, so is the derivation of that important for any other physics problems?

For any conservative force field, including that of gravity, a potential energy function can be found in that way. Note that an arbitrary constant can be added to the potential energy, as you can choose freely what is its value at ##r\rightarrow\infty##.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K