How to show the Proca equation by using the given Proca Lagrangian?(adsbygoogle = window.adsbygoogle || []).push({});

Surely, I know the Euler-Lagrange equation, but I can't solve this differentiation!!(TT)

The given Proca lagrangian is,

[itex]\mathcal{L}= -\frac{1}{16\pi}(\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu})(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})+ \frac{1}{8 \pi} (\frac{mc}{\hbar})^2 A^{\nu} A_{\nu}[/itex]

and the Euler-Lagrangian equation is,

[itex]\partial_{\mu}(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu} A^{\nu})}) = \frac{\partial \mathcal{L}}{\partial A^\nu}[/itex]

At first, I just tried to solve

[itex]\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}A^{\nu})}= \frac{\partial}{\partial(\partial_{\nu}A^{\mu})}(-\frac{1}{16 \pi}(\partial^{\mu}A^{\nu}-\partial{^\nu}A^{\mu})(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})+\cdots)[/itex]

but I think I am misunderstand and not very well to handle these indices. So I think I can understand if I can see correct solving procedure. Please help me :(

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Derivation of the Proca equation from the Proca Lagrangian

Loading...

Similar Threads - Derivation Proca equation | Date |
---|---|

A Angular momentum operator derived from Lorentz invariance | Feb 17, 2018 |

A Covariant derivative in Standard Model | Nov 13, 2017 |

I What does it mean: "up to total derivatives" | May 9, 2017 |

I Covariant derivative of field strength tensor | Jan 5, 2017 |

Amplitude for scalar-proca couplings | Oct 4, 2014 |

**Physics Forums - The Fusion of Science and Community**