Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Derivation of the Proca equation from the Proca Lagrangian

  1. Jul 5, 2011 #1
    How to show the Proca equation by using the given Proca Lagrangian?
    Surely, I know the Euler-Lagrange equation, but I can't solve this differentiation!!(TT)

    The given Proca lagrangian is,
    [itex]\mathcal{L}= -\frac{1}{16\pi}(\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu})(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})+ \frac{1}{8 \pi} (\frac{mc}{\hbar})^2 A^{\nu} A_{\nu}[/itex]

    and the Euler-Lagrangian equation is,
    [itex]\partial_{\mu}(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu} A^{\nu})}) = \frac{\partial \mathcal{L}}{\partial A^\nu}[/itex]

    At first, I just tried to solve

    [itex]\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}A^{\nu})}= \frac{\partial}{\partial(\partial_{\nu}A^{\mu})}(-\frac{1}{16 \pi}(\partial^{\mu}A^{\nu}-\partial{^\nu}A^{\mu})(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})+\cdots)[/itex]

    but I think I am misunderstand and not very well to handle these indices. So I think I can understand if I can see correct solving procedure. Please help me :(
    Last edited: Jul 5, 2011
  2. jcsd
  3. Jul 5, 2011 #2
    you need to raise and lower the indices so they match your derivative-operator, i.e. write

    [itex]\partial^\mu A^\nu = g^{\mu \alpha} \partial_\alpha A^\nu[/itex]

    then you can use
    [itex]\frac{\partial}{\partial (\partial_\alpha A^\beta)} \partial_\mu A^\nu = \delta^\alpha_\mu \delta^\nu_\beta[/itex]

    Hope this helps,

  4. Jul 5, 2011 #3
    Thank you so much! After I see your reply, I thought a little bit and I got right answer! :)
    Let me finish this post. :D

    Now we have the Proca Lagrangian given

    [itex]\mathcal{L}=-\frac{1}{16 \pi} (\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} )(\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} ) + \frac{1}{8 \pi} (\frac{mc}{\hbar})^2 A_{\nu} A^{\nu}[/itex]

    Here we use the index lowering/raising as 'torus' said,

    [itex]\partial^{\mu} A^{\nu} = g^{\mu \alpha} \partial_{\alpha} A^{\nu} [/itex]
    [itex]\partial_{\mu} A_{\nu} = g_{\nu \gamma} \partial_{\mu} A^{\gamma} [/itex]

    then we have the Lagrangian in a modified form.

    [itex]\mathcal{L}=-\frac{1}{16 \pi} (g^{\mu \alpha} \partial_{\alpha} A^{\nu} - g^{\nu \beta} \partial_{\beta} A^{\mu} )(g_{\nu \gamma} \partial_{\mu} A^{\gamma} - g_{\mu \delta} \partial_{\nu} A^{\delta} ) + \frac{1}{8 \pi} (\frac{mc}{\hbar})^2 A_{\nu} A^{\nu}[/itex]

    Now expand the parenthesis in the first term.

    [itex](g^{\mu \alpha} \partial_{\alpha} A^{\nu} - g^{\nu \beta} \partial_{\beta} A^{\mu} )(g_{\nu \gamma} \partial_{\mu} A^{\gamma} - g_{\mu \delta} \partial_{\nu} A^{\delta} )[/itex] :: Let this be (*).
    =g^{\mu \alpha} g_{\nu \gamma}(\partial_{\alpha} A^{\nu})(\partial_{\mu}A^{\gamma})
    -g^{\mu \alpha} g_{\mu \delta}(\partial_{\alpha} A^{\nu})(\partial_{\nu} A^{\delta})
    -g^{\nu \beta} g_{\nu \gamma} (\partial_{\beta} A^{\mu})(\partial_{\mu} A^{\gamma}) +g^{\nu \beta} g_{\mu \delta} (\partial_{\beta} A^{\mu})(\partial_{\nu} A^{\delta})[/itex]

    Now we calculate [itex] \frac{\partial \mathcal{L}}{\partial (\partial_{\rho} A^{\sigma})}[/itex] to get the Euler-Lagrange equation that [itex] \partial_{\rho} ( \frac{\partial \mathcal{L}}{\partial (\partial_{\rho} A^{\sigma})}) = \frac{\partial \mathcal{L}}{\partial A^{\sigma}}[/itex].

    [itex]\frac{\partial \mathcal{L}}{\partial (\partial_{\rho} A^{\sigma})} [/itex]
    [itex]=-\frac{1}{16 \pi}\frac{\partial(*) }{\partial (\partial_{\rho} A^{\sigma})} +0 [/itex]

    Using the product rule of the differentiation and [itex]\frac{\partial A^{i}}{\partial A^{j}}=\delta_{i}^{j}[/itex], [itex]\frac{\partial(*) }{\partial (\partial_{\rho} A^{\sigma})}[/itex] is,

    [itex]\frac{\partial(*) }{\partial (\partial_{\rho} A^{\sigma})} = 4\partial^{\rho} A_{\sigma} - 4 \partial_{\sigma} A^{\rho}[/itex]


    [itex]\frac{\partial \mathcal{L}}{\partial (\partial_{\rho} A^{\sigma})} = -\frac{1}{4 \pi} (\partial^{\rho} A_{\sigma} - \partial_{\sigma} A^{\rho} )[/itex]

    and, using [itex] \frac{\partial \mathcal{L}}{\partial A^{\sigma}} = \frac{1}{4 \pi} (\frac{mc}{\hbar})^2 A^{\sigma}[/itex], the Euler-Lagrange equation yields

    [itex] \partial_{\mu} (\partial^{\mu} A_{\nu} - \partial_{\nu} A^{\mu} ) + (\frac{mc}{\hbar})^2 A^{\nu} = 0 [/itex] Q.E.D.


    P.S. Is there any difference between taking the Proca equation by solving
    [itex] \partial_{\mu}(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})}) = \frac{\partial \mathcal{L}}{\partial A_{\nu}} [/itex]
    [itex] \partial_{\mu}(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A^{\nu})}) = \frac{\partial \mathcal{L}}{\partial A^{\nu}} [/itex]

    Actually my textbook(D.J. Griffiths, Introduction to Elementary Particles, 2nd Edition, Chap. 10.2 Example 3) supposed the vector field [itex]A^{\mu}[/itex] but solved the first one. I can't agree with that so I asked about the second one. Is there any problem?
    Last edited: Jul 5, 2011
  5. Jul 6, 2011 #4
    No, there is no difference as they are connected by just raising/lowering the index nu.
  6. Nov 30, 2012 #5
    thanx timewalker
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook