- #1
Monaliza Smile
- 6
- 0
Hi,
I read in a QFT book that the free massive vector boson Lagrangian is
## \mathcal{L}_W = - \frac{1}{4} (\partial_\mu W^\dagger_\nu - \partial_\nu W_\mu^\dagger ) (\partial^\mu W^\nu - \partial^\nu W^\mu ) + M^2_W W^\dagger_\mu W^\mu ##
gives the propagator in momentum space by:
## i \Delta_{\mu\nu} = - i \frac{g_{\mu\nu - k_\mu k_\nu/M^2_W}}{k^2-M^2_W} ##
Any help how to derive the formula of the propagator from the Lagrangian ?
I read in a QFT book that the free massive vector boson Lagrangian is
## \mathcal{L}_W = - \frac{1}{4} (\partial_\mu W^\dagger_\nu - \partial_\nu W_\mu^\dagger ) (\partial^\mu W^\nu - \partial^\nu W^\mu ) + M^2_W W^\dagger_\mu W^\mu ##
gives the propagator in momentum space by:
## i \Delta_{\mu\nu} = - i \frac{g_{\mu\nu - k_\mu k_\nu/M^2_W}}{k^2-M^2_W} ##
Any help how to derive the formula of the propagator from the Lagrangian ?