Derivative of a piecewise function

AI Thread Summary
The discussion focuses on finding the derivative of a piecewise function defined as f(x) = (x^3 - x^2)/(x - 1) for x ≠ 1 and f(1) = 1. The derivative at x = 1 is calculated using the limit definition, resulting in f'(1) = 2 after applying L'Hôpital's rule. Participants debate whether the function can be simplified to f(x) = x^2, concluding that while both representations are valid, they have different domains. The term "piecewise function" is critiqued, suggesting that the function could have been defined more simply. Overall, the conversation emphasizes the equivalence of the two methods for finding the derivative while questioning the necessity of the piecewise definition.
MatinSAR
Messages
673
Reaction score
204
Homework Statement
Finding derivative of function ##f## which is a piecewise function.
Relevant Equations
##f'(a)=\lim_{x \rightarrow a} {\frac {f(x)-f(a)} {x-a}}##
##f(x) = \begin{cases} \frac {x^3-x^2}{x-1} & \text{if } x\neq1 \\ 1 & \text{if } x=1 \end{cases}##
Find ##f'(1)##.

Using derivative definition:
##f'(1)=\lim_{x \rightarrow 1} {\frac {\frac {x^3-x^2}{x-1}-f(1)} {x-1}}##

##f'(1)=\lim_{x \rightarrow 1} {\frac {\frac {x^3-x^2}{x-1}-1} {x-1}}##

##f'(1)=\lim_{x \rightarrow 1} {\frac {x^3-x^2-x+1} {(x-1)^2}}##

Apply L'Hôpital's rule two times:
##f'(1)=\lim_{x \rightarrow 1} {\frac {6x-2} {2}}##
##f'(1)=2##

Can someone please tell me if I'm wrong …

Can I say that ##f(x) = \begin{cases} \frac {x^3-x^2}{x-1} & \text{if } x\neq1 \\ 1 & \text{if } x=1 \end{cases}## graph is similar to ##y=x^2## but it's undefined at ##x=1##? If it's true then I can find ##f'(1)=2x=2## far faster.
 
Physics news on Phys.org
##f(x) = x^2##? True or false?
 
PeroK said:
##f(x) = x^2##? True or false?
No these functions have different domains, so they're not equal.
 
MatinSAR said:
No these functions have different domains, so they're not equal.
The domain is ##\mathbb R## in both cases.

It's true. The function you are given is plain old ##x^2##, wearing a thin disguise!
 
PeroK said:
The domain is ##\mathbb R## in both cases.

It's true. The function you are given is plain old ##x^2##, wearing a thin disguise!
Oh! I've forgotten that we've defined ##f(1)=1##. So both ways were correct, Do you agree?
 
MatinSAR said:
Oh! I've forgotten that we've defined ##f(1)=1##. So both ways were correct, Do you agree?
Both methods are valid. But, the first method is unnecessarily complicated.

As an aside, I've never liked the term piecewise function, as there is no such thing, IMO. You can define a function piecewise. But, as in this case, that doesn't mean that you have to define it piecewise. In this case, you could equally well have written ##f(x) = x^2 \ (\forall x)##.

I wonder whether whoever set the question realised this.
 
PeroK said:
Both methods are valid. But, the first method is unnecessarily complicated.
Yes.
PeroK said:
As an aside, I've never liked the term piecewise function, as there is no such thing, IMO. You can define a function piecewise. But, as in this case, that doesn't mean that you have to define it piecewise. In this case, you could equally well have written ##f(x) = x^2 \ (\forall x)##.

I wonder whether whoever set the question realised this.
I've understand it. Thank you for your valuable help and time.
 

Similar threads

Back
Top