Derivative of a Sum: Does the Index Change?

  • Thread starter Thread starter rmiller70015
  • Start date Start date
  • Tags Tags
    Derivatives Series
Click For Summary
The discussion focuses on the differentiation of power series in the context of solving a differential equation using the Frobenius method. The main question raised is whether taking the derivative of a sum changes its index, with observations that the index appears to change in power series but remains constant in the Frobenius method. The user struggles with aligning indices and powers of x when plugging derivatives into the original ordinary differential equation. It is clarified that while the indices can be adjusted, careful attention is needed to maintain consistency across terms. Ultimately, the importance of correctly shifting indices and managing coefficients in power series solutions is emphasized.
rmiller70015
Messages
110
Reaction score
1

Homework Statement


This is for a differential equations class I'm taking and we're talking about the method of Frobeneus, Euler equations, and power series solutions for non-constant coefficients. The ODE is:
6x^2y''+7xy'-(1-x^2)y=0

I need to find the recurrence formula and I keep running into a problem with my grouping. So the question I have is when I take the derivative of a sum, does that change its index, or does the index stay the same? Because when the book explains it with power series the index is changed with each derivative taken. But when they do the Frobeneus method the index does not change when a derivative is taken.

Homework Equations

The Attempt at a Solution



Assume $$y=\sum_{n=0}^{\infty}a_nx^{n+r}$$ where r is the root of the indicial and then the derivatives are:
$$y'=\sum_{n=1}^{\infty}(n+r)a_nx^{n+r-1}$$ and $$y''=\sum_{n=2}^{\infty}(n+r-1)(n+r)a_nx^{n+r-2}$$
Plugging this into the ODE gives:
$$6\sum_{n=2}^{\infty}(n+r-1)(n+r)a_nx^{n+r} +7\sum_{n=1}^{\infty}(n+r)a_nx^{n+r}-\sum_{n=0}^{\infty}a_nx^{n+r}+\sum_{n=0}^{\infty}a_nx^{n+r+2}$$

Here is where the problem begins, I've tried changing my indices, but I can't quite get the powers of x and the indices to agree, and when I do get the indices to agree I get three different values of a (##a_1##,##a_2##, and ##a_0##)
 
Physics news on Phys.org
rmiller70015 said:

Homework Statement


This is for a differential equations class I'm taking and we're talking about the method of Frobeneus, Euler equations, and power series solutions for non-constant coefficients. The ODE is:
6x^2y''+7xy'-(1-x^2)y=0

I need to find the recurrence formula and I keep running into a problem with my grouping. So the question I have is when I take the derivative of a sum, does that change its index, or does the index stay the same? Because when the book explains it with power series the index is changed with each derivative taken. But when they do the Frobeneus method the index does not change when a derivative is taken.

Homework Equations

The Attempt at a Solution



Assume $$y=\sum_{n=0}^{\infty}a_nx^{n+r}$$ where r is the root of the indicial and then the derivatives are:
$$y'=\sum_{n=1}^{\infty}(n+r)a_nx^{n+r-1}$$ and $$y''=\sum_{n=2}^{\infty}(n+r-1)(n+r)a_nx^{n+r-2}$$
Plugging this into the ODE gives:
$$6\sum_{n=2}^{\infty}(n+r-1)(n+r)a_nx^{n+r} +7\sum_{n=1}^{\infty}(n+r)a_nx^{n+r}-\sum_{n=0}^{\infty}a_nx^{n+r}+\sum_{n=0}^{\infty}a_nx^{n+r+2}$$

Here is where the problem begins, I've tried changing my indices, but I can't quite get the powers of x and the indices to agree, and when I do get the indices to agree I get three different values of a (##a_1##,##a_2##, and ##a_0##)

In ##y## the successive powers are ##r, r+1, r+2, r+3, \ldots##, while in ##y'## they are ##r-1, r , r+1, r+2 , \ldots##, so for the same power of ##x## you need to shift the index on the coefficient by 1; that is, from ##a_j x^{r+j}## in ##y## you get ##(r+j) a_j x^{r+j-1}## in ##y'##. If we let ##n = r+j## then (with ##b_{r+j} = a_j##) we have ##a_n x^n## in ##y## but ##n a_n x^{n-1}## in ##y'##, and that last one can be re-written as ##(m+1) a_{m+1} x^m##, where ##m = n-1##. You can choose to write things however you want, as long as you are careful and avoid making mistakes.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K