- #1
- 34
- 3
When a classical field is varied so that ##\phi ^{'}=\phi +\delta \phi## the spatial partial derivatives of the field is often written $$\partial _{\mu }\phi ^{'}=\partial _{\mu }(\phi +\delta \phi )=\partial _{\mu }\phi +\partial _{\mu }\delta \phi $$. Often times the next step is to switch the order of the variation and the partial derivative to get ##\partial _{\mu }\phi ^{'}=\partial _{\mu }\phi +\delta (\partial _{\mu }\phi )##. What justifies the replacement of ##\partial_{\mu }(\delta\phi )## by ##\delta (\partial _{\mu }\phi )##?