Derivative using the limit definition (without using L'Hospital's rule)

Click For Summary
SUMMARY

The discussion focuses on finding the derivative of a function at a point \(x_0\) using the limit definition, explicitly avoiding L'Hospital's Rule. The user initially misidentified the denominator as \(x - 0\) instead of \(x - x_0\). The analysis reveals that the limit of the arctangent function does not exist as \(x\) approaches \(0\), leading to the conclusion that the derivative \(f'(x_0)\) does not exist. The conversation highlights the importance of understanding limit behavior in calculus.

PREREQUISITES
  • Understanding of the limit definition of a derivative
  • Familiarity with the arctangent function and its properties
  • Basic knowledge of calculus concepts, specifically limits
  • Ability to manipulate algebraic expressions involving limits
NEXT STEPS
  • Study the properties of the arctangent function in detail
  • Learn about the limit definition of derivatives in various contexts
  • Explore alternative methods for finding derivatives without L'Hospital's Rule
  • Practice solving limit problems involving piecewise functions
USEFUL FOR

Students and educators in calculus, mathematicians interested in limit processes, and anyone seeking to deepen their understanding of derivative concepts without relying on advanced rules like L'Hospital's.

goody1
Messages
16
Reaction score
0
Hello everybody, could you help me with this problem please? I have to find a derivative in x0 of this function (without using L'Hospital's rule):
View attachment 9694

I used the definition View attachment 9695, but I don't know what to do next. Thank you.
 

Attachments

  • limm.png
    limm.png
    1.1 KB · Views: 142
  • limm.png
    limm.png
    1.4 KB · Views: 139
Physics news on Phys.org
goody said:
Hello everybody, could you help me with this problem please? I have to find a derivative in x0 of this function (without using L'Hospital's rule):I used the definition , but I don't know what to do next. Thank you.

First of all, the denominator is x - x_0, not x - 0.

If you can't use L'Hospital's Rule (which, by the way, is a pointless constraint designed to make life more difficult for the person doing the work), then I'd advise using a series for the arctangent function.
 
Note that $f(x_0)=f(0)$ has been defined as $0$.

So we have:
$$f'(x_0)=\lim_{x\to x_0}\frac{\pi x^2+x\arctan\frac{3\pi}x-f(x_0)}{x-x_0}
=\lim_{x\to 0}\frac{\pi x^2+x\arctan\frac{3\pi}x-f(0)}{x-0}
=\lim_{x\to 0}\Big(\pi x+\arctan\frac{3\pi}x\Big)
$$
Furthermore:
$$\lim_{x\to 0^+}\arctan\frac{3\pi}x = \frac\pi 2$$
$$\lim_{x\to 0^-}\arctan\frac{3\pi}x = -\frac\pi 2$$
So $\lim\limits_{x\to 0}\arctan\frac{3\pi}x$ does not exist, and therefore $f'(x_0)$ does not exist either.
 
I know using L'Hospital's rule would be easy way to solve it but we haven't learned it yet so we're forced to find another ways.

Anyways, thank you so much Klaas van Aarsen, now when you showed me it looks so simple.
 
[math]\lim_{\theta \to \pi/2} \tan(\theta)= \infty[/math] so [math]\lim_{x \to\infty} \arctan(x)=\pi/2[/math]. That limit certainly does exist!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 53 ·
2
Replies
53
Views
6K