MHB Derivative using the limit definition (without using L'Hospital's rule)

AI Thread Summary
The discussion focuses on finding the derivative of a function at a point x0 without using L'Hospital's rule. Participants clarify that the denominator should be x - x0 and suggest using a series for the arctangent function. The limit approaches show that the derivative does not exist due to the differing limits from the left and right of zero for the arctangent function. The conversation highlights the challenge of solving the problem without L'Hospital's rule, emphasizing the importance of understanding limits. Ultimately, the solution reveals that the limit of the derivative does not exist, leading to a deeper understanding of the function's behavior.
goody1
Messages
16
Reaction score
0
Hello everybody, could you help me with this problem please? I have to find a derivative in x0 of this function (without using L'Hospital's rule):
View attachment 9694

I used the definition View attachment 9695, but I don't know what to do next. Thank you.
 

Attachments

  • limm.png
    limm.png
    1.1 KB · Views: 125
  • limm.png
    limm.png
    1.4 KB · Views: 125
Mathematics news on Phys.org
goody said:
Hello everybody, could you help me with this problem please? I have to find a derivative in x0 of this function (without using L'Hospital's rule):I used the definition , but I don't know what to do next. Thank you.

First of all, the denominator is x - x_0, not x - 0.

If you can't use L'Hospital's Rule (which, by the way, is a pointless constraint designed to make life more difficult for the person doing the work), then I'd advise using a series for the arctangent function.
 
Note that $f(x_0)=f(0)$ has been defined as $0$.

So we have:
$$f'(x_0)=\lim_{x\to x_0}\frac{\pi x^2+x\arctan\frac{3\pi}x-f(x_0)}{x-x_0}
=\lim_{x\to 0}\frac{\pi x^2+x\arctan\frac{3\pi}x-f(0)}{x-0}
=\lim_{x\to 0}\Big(\pi x+\arctan\frac{3\pi}x\Big)
$$
Furthermore:
$$\lim_{x\to 0^+}\arctan\frac{3\pi}x = \frac\pi 2$$
$$\lim_{x\to 0^-}\arctan\frac{3\pi}x = -\frac\pi 2$$
So $\lim\limits_{x\to 0}\arctan\frac{3\pi}x$ does not exist, and therefore $f'(x_0)$ does not exist either.
 
I know using L'Hospital's rule would be easy way to solve it but we haven't learned it yet so we're forced to find another ways.

Anyways, thank you so much Klaas van Aarsen, now when you showed me it looks so simple.
 
[math]\lim_{\theta \to \pi/2} \tan(\theta)= \infty[/math] so [math]\lim_{x \to\infty} \arctan(x)=\pi/2[/math]. That limit certainly does exist!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top