MHB Derivatives of symmetric expressions

Click For Summary
The discussion revolves around finding clean expressions for the first and second derivatives of specific symmetric functions defined as products of rational expressions. The first function is given by f(x) = ∏(x-i)/(x+i), and the second by f(x) = ∏(x^2-i)/(x^2+i). A key relation is introduced, linking the derivative of the logarithm of f(x) to its derivative, allowing for simplification. The derivative of the logarithm for the first function is expressed as a summation involving the terms (1/(x-i) - 1/(x+i)). The same differentiation approach is applicable to the second function, indicating a method for deriving these expressions.
kalish1
Messages
79
Reaction score
0
So I was bored in math class and came up with this series of related questions, that I cannot answer:

Is there a clean expression for $f'(x),$ where $$f(x)=\prod_{i=1}^{n}\dfrac{(x-i)}{(x+i)}?$$

What about for $f''(x)?$ Or for $$f(x)=\prod_{i=1}^{n}\dfrac{(x^2-i)}{(x^2+i)}?$$
 
Mathematics news on Phys.org
kalish said:
So I was bored in math class and came up with this series of related questions, that I cannot answer:

Is there a clean expression for $f'(x),$ where $$f(x)=\prod_{i=1}^{n}\dfrac{(x-i)}{(x+i)}?$$

What about for $f''(x)?$ Or for $$f(x)=\prod_{i=1}^{n}\dfrac{(x^2-i)}{(x^2+i)}?$$

You can use the relation...

$\displaystyle \frac{d}{d x} \ln f(x) = \frac{f^{\ '} (x)}{f(x)} \implies f^{\ '} (x) = f(x)\ \frac{d}{d x} \ln f(x)\ (1)$

... and in this case...

$\displaystyle \frac{d}{d x} \ln f(x) = \sum_{i = 1}^{n} (\frac{1}{x - i} - \frac{1}{x + i}) = 2\ \sum_{i=1}^{n} \frac{i}{x^{2} - i^{2}}\ (2)$

The same procedure is valid also for the second function...

Kind regards

$\chi$ $\sigma$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
2
Views
1K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K