MHB Derivatives of symmetric expressions

AI Thread Summary
The discussion revolves around finding clean expressions for the first and second derivatives of specific symmetric functions defined as products of rational expressions. The first function is given by f(x) = ∏(x-i)/(x+i), and the second by f(x) = ∏(x^2-i)/(x^2+i). A key relation is introduced, linking the derivative of the logarithm of f(x) to its derivative, allowing for simplification. The derivative of the logarithm for the first function is expressed as a summation involving the terms (1/(x-i) - 1/(x+i)). The same differentiation approach is applicable to the second function, indicating a method for deriving these expressions.
kalish1
Messages
79
Reaction score
0
So I was bored in math class and came up with this series of related questions, that I cannot answer:

Is there a clean expression for $f'(x),$ where $$f(x)=\prod_{i=1}^{n}\dfrac{(x-i)}{(x+i)}?$$

What about for $f''(x)?$ Or for $$f(x)=\prod_{i=1}^{n}\dfrac{(x^2-i)}{(x^2+i)}?$$
 
Mathematics news on Phys.org
kalish said:
So I was bored in math class and came up with this series of related questions, that I cannot answer:

Is there a clean expression for $f'(x),$ where $$f(x)=\prod_{i=1}^{n}\dfrac{(x-i)}{(x+i)}?$$

What about for $f''(x)?$ Or for $$f(x)=\prod_{i=1}^{n}\dfrac{(x^2-i)}{(x^2+i)}?$$

You can use the relation...

$\displaystyle \frac{d}{d x} \ln f(x) = \frac{f^{\ '} (x)}{f(x)} \implies f^{\ '} (x) = f(x)\ \frac{d}{d x} \ln f(x)\ (1)$

... and in this case...

$\displaystyle \frac{d}{d x} \ln f(x) = \sum_{i = 1}^{n} (\frac{1}{x - i} - \frac{1}{x + i}) = 2\ \sum_{i=1}^{n} \frac{i}{x^{2} - i^{2}}\ (2)$

The same procedure is valid also for the second function...

Kind regards

$\chi$ $\sigma$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top