MHB Derivatives of symmetric expressions

AI Thread Summary
The discussion revolves around finding clean expressions for the first and second derivatives of specific symmetric functions defined as products of rational expressions. The first function is given by f(x) = ∏(x-i)/(x+i), and the second by f(x) = ∏(x^2-i)/(x^2+i). A key relation is introduced, linking the derivative of the logarithm of f(x) to its derivative, allowing for simplification. The derivative of the logarithm for the first function is expressed as a summation involving the terms (1/(x-i) - 1/(x+i)). The same differentiation approach is applicable to the second function, indicating a method for deriving these expressions.
kalish1
Messages
79
Reaction score
0
So I was bored in math class and came up with this series of related questions, that I cannot answer:

Is there a clean expression for $f'(x),$ where $$f(x)=\prod_{i=1}^{n}\dfrac{(x-i)}{(x+i)}?$$

What about for $f''(x)?$ Or for $$f(x)=\prod_{i=1}^{n}\dfrac{(x^2-i)}{(x^2+i)}?$$
 
Mathematics news on Phys.org
kalish said:
So I was bored in math class and came up with this series of related questions, that I cannot answer:

Is there a clean expression for $f'(x),$ where $$f(x)=\prod_{i=1}^{n}\dfrac{(x-i)}{(x+i)}?$$

What about for $f''(x)?$ Or for $$f(x)=\prod_{i=1}^{n}\dfrac{(x^2-i)}{(x^2+i)}?$$

You can use the relation...

$\displaystyle \frac{d}{d x} \ln f(x) = \frac{f^{\ '} (x)}{f(x)} \implies f^{\ '} (x) = f(x)\ \frac{d}{d x} \ln f(x)\ (1)$

... and in this case...

$\displaystyle \frac{d}{d x} \ln f(x) = \sum_{i = 1}^{n} (\frac{1}{x - i} - \frac{1}{x + i}) = 2\ \sum_{i=1}^{n} \frac{i}{x^{2} - i^{2}}\ (2)$

The same procedure is valid also for the second function...

Kind regards

$\chi$ $\sigma$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top