Deriving and Verifying the Relativity Formula for Electron Speed

AI Thread Summary
The discussion focuses on deriving and verifying the relativistic speed formula for an electron influenced by an electric field. The proposed speed function is v(t) = At/√(1 + (At/c)²), where A is defined as qE/m. Participants are tasked with confirming that this function satisfies the differential equation dv/dt = (qE/m)(1 - v²/c²)^{-3/2}. The relationship between force and velocity is emphasized, noting their parallel alignment. The conversation aims to deepen understanding of relativistic effects on electron motion under electric fields.
Samkiwi
Messages
16
Reaction score
1
Homework Statement
I'm having trouble finding the proof of the relativistic acceleration formula starting from the velocity formula, I've been working on it for a long time but I can't solve this question. :)
Relevant Equations
electromagnetism and relativity
It is an electron initially pushed by the action of the electric field. The vectors of force and velocity are parallel to each other.

Here's the questionA possible expression of speed as a function of time is the following:

$$v(t) = \frac{At}{\sqrt{1 + (\frac{At}{c})^2}}$$where is it $$A =\frac{qE}{m}$$
Taking into account that [2] can be written in the equivalent form.
$$\frac{dv}{dt}=\frac{qE}{m}(1-\frac{v^{2}}{c^{2}})^{-\frac{3}{2}}[3]$$
verify by deriving and substituting that the function v (t) defined by [2] satisfies [3]
 
Last edited:
Physics news on Phys.org
Try this: $$v(t) = \frac{At}{\sqrt{1 + (\frac{At}{c})^2}}$$
 
thanks:bow:
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top