Deriving cross product and dot product, stuck at beginning.

  • Thread starter JJRKnights
  • Start date
  • #1
53
0

Homework Statement


Assuming that ∅ is a differentiable scalar valued function and F a differentiable vector field, derive the following identities.

a)∇(dotted with)(∅F) = ∇∅(dotted with)F + ∅∇(dotted with)F
b)∇(crossed with)(∅F) = ∇∅(crossed with)F + ∅∇(crossed with)F

Homework Equations





The Attempt at a Solution


Honestly don't know where to start.
 

Answers and Replies

  • #2
53
0
Nevermind, delete this, I've got it, just didn't put the initial effort into it.
 
  • #3
53
0
Would this be the correct derivation for part a)

So far all I see is:
∅F is the vector field
∅ = ∅(x,y,z)
F = <P,Q,R>
∇(dotted with)F = x partial P + y partial Q + z partial R
∇∅ = <x partial ∅, y partial ∅, z partial ∅>
∅F = <∅P, ∅Q, ∅R>

a)∇(dotted with)(∅F) = [∇∅](dotted with)F + ∅∇(dotted with)F
∇(dotted with)(∅F) = [∇∅](dotted with)F + ∅[∇(dotted with)F]
∇(dotted with)(∅F) = [∇∅](dotted with)F + ∅(∂/∂xP + ∂/∂yQ + ∂/∂zR)
∇(dotted with)(∅F) = [∇∅](dotted with)F + ∅(∂/∂xP + ∂/∂yQ + ∂/∂zR)
∇(dotted with)(∅F) = <∂/∂x∅, ∂/∂y∅, ∂/∂z∅>(dotted with)<P,Q,R> + ∅(∂/∂xP + ∂/∂yQ + ∂/∂zR)
∇(dotted with)(∅F) = <0,0,0>(dotted with)<P,Q,R> + ∅(∂/∂xP + ∂/∂yQ + ∂/∂zR)
∇(dotted with)[∅F] = ∅(∂/∂xP + ∂/∂yQ + ∂/∂zR)
<∂/∂x,∂/∂y,∂/∂z>(dotted with)<∅P, ∅Q, ∅R> = ∅(∂/∂xP + ∂/∂yQ + ∂/∂zR)
∅(∂/∂xP + ∂/∂yQ + ∂/∂zR) = ∅(∂/∂xP + ∂/∂yQ + ∂/∂zR)
∇(dotted with)(∅F) = [∇∅](dotted with)F + ∅∇(dotted with)F
 
  • #4
53
0
Hello? I did the work out and nobody can spot anything I did wrong, or if i did it right?
 
  • #5
vela
Staff Emeritus
Science Advisor
Homework Helper
Education Advisor
14,883
1,461
No, that isn't correct. You can't treat [itex]\phi[/itex] like a constant.
 
  • #6
53
0
Thank you for the reply.

My professor wrote all of those on the board:

ϕ = ϕ(x,y,z)
ϕF is the vector field
ϕ = ϕ(x,y,z)
F = <P,Q,R>
∇(dotted with)F = x partial P + y partial Q + z partial R
∇ϕ = <x partial ϕ, y partial ϕ, z partial ϕ>
ϕF = <ϕP, ϕQ, ϕR>

ϕ is a function of x,y, and z.
If I can't treat it as a constant in this situation, what can I do with it?
 
  • #7
vela
Staff Emeritus
Science Advisor
Homework Helper
Education Advisor
14,883
1,461
Just start with the definition of the divergence and apply it to ϕF = (ϕP, ϕQ, ϕR):
[tex]\nabla\cdot(\phi \mathbf{F}) = \frac{\partial}{\partial x} (\phi P) + \frac{\partial}{\partial y} (\phi Q) + \frac{\partial}{\partial z} (\phi R)[/tex]Now use the product rule on each of the three terms.
 
  • #8
53
0
∇⋅(ϕF)=∂/∂x(ϕP)+∂/∂y(ϕQ)+∂/∂z(ϕR)
so
=(ϕ'P + P'ϕ) + (ϕQ' + ϕ'Q) + (ϕR' + ϕ'R)
= ϕ'(P+Q+R) + ϕ(P'+Q'+R')
So it looks like ϕ'(P+Q+R) = (∇ϕ)⋅F and ϕ(P'+Q'+R') = ϕ(∇⋅F)
and that is the end of the proof?
 
  • #9
vela
Staff Emeritus
Science Advisor
Homework Helper
Education Advisor
14,883
1,461
You're on the right track, but you need to keep track of the fact that the derivatives are with respect to different variables so you can't, for example, simply collect terms and factor ϕ' out to get the first term.
 

Related Threads on Deriving cross product and dot product, stuck at beginning.

  • Last Post
Replies
11
Views
5K
  • Last Post
Replies
5
Views
3K
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
5
Views
2K
  • Last Post
Replies
10
Views
1K
  • Last Post
Replies
1
Views
1K
Replies
4
Views
4K
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
7
Views
3K
  • Last Post
Replies
4
Views
17K
Top