Deriving position function for object in SHM

AI Thread Summary
The discussion focuses on deriving the position function for an object in simple harmonic motion (SHM). Participants emphasize the importance of eliminating variables, particularly avoiding unnecessary complexity with functions like arccos. They suggest starting with the three initial state equations: position, velocity, and acceleration, to effectively combine them and eliminate unknowns. One user expresses gratitude for the guidance received and confirms they have solved the problem. The conversation highlights the value of recognizing unproductive approaches in problem-solving.
member 731016
Homework Statement
Please see the image below
Relevant Equations
x(t) = Acos(wt + ϕ)
For this problem,
1670306945988.png

1670306964083.png

How did they get that formula shown?

My working is,
1670307096649.png

1670307174104.png

1670307305108.png


All the solutions wrote was,
1670307369422.png


Many thanks!
 

Attachments

  • 1670307248845.png
    1670307248845.png
    3.9 KB · Views: 121
Physics news on Phys.org
Your working headed off into a blind alley. You know that you need to be eliminating A, so tucking it inside an arccos function isn’t going to get you there.
Start by writing all three initial state equations: position, velocity and acceleration. Then see how you can combine them to eliminate one of the unknowns.
 
  • Like
Likes member 731016
Please type out your work instead of attaching pictures. The pictures make it impossible to quote particular sections.

Edit: I suggest you change your unknowns from A and phi to something more direct.
 
  • Like
Likes member 731016
haruspex said:
Your working headed off into a blind alley. You know that you need to be eliminating A, so tucking it inside an arccos function isn’t going to get you there.
Start by writing all three initial state equations: position, velocity and acceleration. Then see how you can combine them to eliminate one of the unknowns.
Thank you @haruspex and @Orodruin! I have solved the problem now.

Many thanks!
 
Callumnc1 said:
Thank you @haruspex and @Orodruin! I have solved the problem now.

Many thanks!
You are welcome. But did you understand my comment about heading off into a blind alley? Recognising which directions cannot lead anywhere is a useful skill to develop.
 
  • Like
Likes member 731016
haruspex said:
You are welcome. But did you understand my comment about heading off into a blind alley? Recognising which directions cannot lead anywhere is a useful skill to develop.
Thanks @haruspex! I did understand your comment, which I agree, would be very useful skill to have!

Many thanks,
Callum
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top