Deriving position function for object in SHM

AI Thread Summary
The discussion focuses on deriving the position function for an object in simple harmonic motion (SHM). Participants emphasize the importance of eliminating variables, particularly avoiding unnecessary complexity with functions like arccos. They suggest starting with the three initial state equations: position, velocity, and acceleration, to effectively combine them and eliminate unknowns. One user expresses gratitude for the guidance received and confirms they have solved the problem. The conversation highlights the value of recognizing unproductive approaches in problem-solving.
member 731016
Homework Statement
Please see the image below
Relevant Equations
x(t) = Acos(wt + ϕ)
For this problem,
1670306945988.png

1670306964083.png

How did they get that formula shown?

My working is,
1670307096649.png

1670307174104.png

1670307305108.png


All the solutions wrote was,
1670307369422.png


Many thanks!
 

Attachments

  • 1670307248845.png
    1670307248845.png
    3.9 KB · Views: 116
Physics news on Phys.org
Your working headed off into a blind alley. You know that you need to be eliminating A, so tucking it inside an arccos function isn’t going to get you there.
Start by writing all three initial state equations: position, velocity and acceleration. Then see how you can combine them to eliminate one of the unknowns.
 
  • Like
Likes member 731016
Please type out your work instead of attaching pictures. The pictures make it impossible to quote particular sections.

Edit: I suggest you change your unknowns from A and phi to something more direct.
 
  • Like
Likes member 731016
haruspex said:
Your working headed off into a blind alley. You know that you need to be eliminating A, so tucking it inside an arccos function isn’t going to get you there.
Start by writing all three initial state equations: position, velocity and acceleration. Then see how you can combine them to eliminate one of the unknowns.
Thank you @haruspex and @Orodruin! I have solved the problem now.

Many thanks!
 
Callumnc1 said:
Thank you @haruspex and @Orodruin! I have solved the problem now.

Many thanks!
You are welcome. But did you understand my comment about heading off into a blind alley? Recognising which directions cannot lead anywhere is a useful skill to develop.
 
  • Like
Likes member 731016
haruspex said:
You are welcome. But did you understand my comment about heading off into a blind alley? Recognising which directions cannot lead anywhere is a useful skill to develop.
Thanks @haruspex! I did understand your comment, which I agree, would be very useful skill to have!

Many thanks,
Callum
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top