Deriving the Laplacian in spherical coordinates

Click For Summary
The discussion focuses on deriving the Laplacian in spherical coordinates to enhance understanding of quantum mechanics. The initial approach involves expressing partial derivatives in terms of spherical coordinates, but there are errors in omitting derivatives with respect to the radial coordinate, r. Participants emphasize that r is a variable and cannot be treated as constant, and they suggest using test functions to avoid mistakes in calculations. The complexity of the derivation is acknowledged, with recommendations to explore simpler two-dimensional cases before tackling the three-dimensional problem. Overall, the conversation highlights the challenges and necessary corrections in deriving the Laplacian in spherical coordinates.
Mayhem
Messages
417
Reaction score
311
Homework Statement
Derive the Laplacian in spherical coordinates using the Laplacian in rectangular coordinates
Relevant Equations
##\nabla = \left ( \frac{\partial }{\partial x}, \frac{\partial }{\partial y}, \frac{\partial }{\partial z}\right )##

##x=r \sin(\theta) \cos(\phi), y=r \sin(\theta) \sin(\phi), z = r \cos(\theta)##
As a part of my self study, I am trying to derive the Laplacian in spherical coordinates to gain a deeper understanding of the mathematics of quantum mechanics.
For reference, this the sphere I am using, where ##r## is constant and ##\theta = \theta (x,y, z), \phi = \phi(x,y)##.
1635943766323.png


Given the definitions in "Relevant Equations", we can define the partial derivatives of ##x, y## and ##z##$$\begin{align*}
\frac{\partial }{\partial x} &= r\left(\cos(\theta)\cos(\phi)\frac{\partial }{\partial \theta} - \sin(\theta)\sin(\phi)\frac{\partial }{\partial \phi}\right ) \\
\frac{\partial }{\partial y} &= r\left(\cos(\theta)\sin(\phi)\frac{\partial }{\partial \theta} - \sin(\theta)\cos(\phi)\frac{\partial }{\partial \phi}\right ) \\
\frac{\partial }{\partial z} &= -r \sin(\theta) \frac{\partial }{\partial \theta}
\end{align*}$$
Thus the gradient in spherical coordinates becomes $$\nabla = \begin{pmatrix}
r\left(\cos(\theta)\cos(\phi)\frac{\partial }{\partial \theta} - \sin(\theta)\sin(\phi)\frac{\partial }{\partial \phi}\right )\\
r\left(\cos(\theta)\sin(\phi)\frac{\partial }{\partial \theta} - \sin(\theta)\cos(\phi)\frac{\partial }{\partial \phi}\right )
\\
-r \sin(\theta) \frac{\partial }{\partial \theta}\end{pmatrix}
$$
The Laplacian is given as ##\Delta = \nabla \cdot \nabla = \nabla^2##.

My question is: once I take the dot product of the given gradient vector, will I be able to simplify into the Laplacian for spherical coordinates? I am asking, because it takes a lot of brute calculations to find out, and therefore I want to know if my initial math is correct.
 
  • Like
Likes Delta2
Physics news on Phys.org
You've expressed the partial derivatives in terms of ##\theta## and ##\phi##, but you've omitted the derivatives in terms of ##r##. Also, the vector is still in terms of the Cartesian basis vectors, rather than ##\hat r## etc.

The Laplacian has second derivatives with respect to ##x, y, z##, so you should expect second derivatives with respect to ##r, \theta, \phi## to appear.

So, you have some mistakes and misconceptions, I'm sorry to say.
 
  • Like
Likes docnet
PeroK said:
You've expressed the partial derivatives in terms of ##\theta## and ##\phi##, but you've omitted the derivatives in terms of ##r##. Also, the vector is still in terms of the Cartesian basis vectors, rather than ##\hat r## etc.

The Laplacian has second derivatives with respect to ##x, y, z##, so you should expect second derivatives with respect to ##r, \theta, \phi## to appear.

So, you have some mistakes and misconceptions, I'm sorry to say.
Where exactly do I start then?
 
Mayhem said:
Where exactly do I start then?
I just noticed that your derivatives are not right:

Mayhem said:
Given the definitions in "Relevant Equations", we can define the partial derivatives of ##x, y## and ##z##$$\begin{align*}
\frac{\partial }{\partial x} &= r\left(\cos(\theta)\cos(\phi)\frac{\partial }{\partial \theta} - \sin(\theta)\sin(\phi)\frac{\partial }{\partial \phi}\right ) \\
\frac{\partial }{\partial y} &= r\left(\cos(\theta)\sin(\phi)\frac{\partial }{\partial \theta} - \sin(\theta)\cos(\phi)\frac{\partial }{\partial \phi}\right ) \\
\frac{\partial }{\partial z} &= -r \sin(\theta) \frac{\partial }{\partial \theta}
\end{align*}$$
It's generally better to included test function to avoid mistakes:
$$\frac{\partial f }{\partial x} = \frac{\partial f}{\partial r}\frac{\partial r}{\partial x} + \frac{\partial f}{\partial \theta}\frac{\partial \theta}{\partial x} + \frac{\partial f}{\partial \phi}\frac{\partial \phi}{\partial x}$$
 
PeroK said:
I just noticed that your derivatives are not right:It's generally better to included test function to avoid mistakes:
$$\frac{\partial f }{\partial x} = \frac{\partial f}{\partial r}\frac{\partial r}{\partial x} + \frac{\partial f}{\partial \theta}\frac{\partial \theta}{\partial x} + \frac{\partial f}{\partial \phi}\frac{\partial \phi}{\partial x}$$
I am a little confused it seems. I cannot take ##r## to be constant?
 
Mayhem said:
I am a little confused it seems. I cannot take ##r## to be constant?
Definitely not. ##r## is one of the three coordinates.
 
PeroK said:
Definitely not. ##r## is one of the three coordinates.
I see. I found this and it seems what I am trying to accomplish isn't exactly a simple task (probably why my textbook omitted the derivation), but I will try to work through it.
 
Mayhem said:
I see. I found this and it seems what I am trying to accomplish isn't exactly a simple task (probably why my textbook omitted the derivation), but I will try to work through it.
That's even more work than I recall. There are quicker ways to do it using results for general coordinate systems.
 
PeroK said:
That's even more work than I recall. There are quicker ways to do it using results for general coordinate systems.
Hm.

I think I might have to backtrack a little and consider the same problem but in two dimensions, and then once I understand that, I can move on to the 3D case.