Deriving the Laplacian in spherical coordinates

Click For Summary

Homework Help Overview

The discussion revolves around deriving the Laplacian in spherical coordinates, a topic relevant to quantum mechanics. The original poster attempts to understand the mathematical framework by expressing partial derivatives in terms of spherical coordinates, specifically focusing on the variables ##r##, ##\theta##, and ##\phi##.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants discuss the need to include derivatives with respect to ##r##, ##\theta##, and ##\phi## in the Laplacian. There are questions about the correctness of the original poster's expressions and the implications of treating ##r## as constant. Some suggest using test functions to clarify the derivation process.

Discussion Status

The conversation is ongoing, with participants providing feedback on the original poster's approach. There is recognition that deriving the Laplacian is complex, and some participants suggest exploring simpler cases or utilizing existing results for general coordinate systems.

Contextual Notes

There is an indication that the original poster may have omitted important components in their derivation, leading to confusion about the treatment of the variable ##r##. The discussion reflects a mix of interpretations and approaches to the problem.

Mayhem
Messages
425
Reaction score
317
Homework Statement
Derive the Laplacian in spherical coordinates using the Laplacian in rectangular coordinates
Relevant Equations
##\nabla = \left ( \frac{\partial }{\partial x}, \frac{\partial }{\partial y}, \frac{\partial }{\partial z}\right )##

##x=r \sin(\theta) \cos(\phi), y=r \sin(\theta) \sin(\phi), z = r \cos(\theta)##
As a part of my self study, I am trying to derive the Laplacian in spherical coordinates to gain a deeper understanding of the mathematics of quantum mechanics.
For reference, this the sphere I am using, where ##r## is constant and ##\theta = \theta (x,y, z), \phi = \phi(x,y)##.
1635943766323.png


Given the definitions in "Relevant Equations", we can define the partial derivatives of ##x, y## and ##z##$$\begin{align*}
\frac{\partial }{\partial x} &= r\left(\cos(\theta)\cos(\phi)\frac{\partial }{\partial \theta} - \sin(\theta)\sin(\phi)\frac{\partial }{\partial \phi}\right ) \\
\frac{\partial }{\partial y} &= r\left(\cos(\theta)\sin(\phi)\frac{\partial }{\partial \theta} - \sin(\theta)\cos(\phi)\frac{\partial }{\partial \phi}\right ) \\
\frac{\partial }{\partial z} &= -r \sin(\theta) \frac{\partial }{\partial \theta}
\end{align*}$$
Thus the gradient in spherical coordinates becomes $$\nabla = \begin{pmatrix}
r\left(\cos(\theta)\cos(\phi)\frac{\partial }{\partial \theta} - \sin(\theta)\sin(\phi)\frac{\partial }{\partial \phi}\right )\\
r\left(\cos(\theta)\sin(\phi)\frac{\partial }{\partial \theta} - \sin(\theta)\cos(\phi)\frac{\partial }{\partial \phi}\right )
\\
-r \sin(\theta) \frac{\partial }{\partial \theta}\end{pmatrix}
$$
The Laplacian is given as ##\Delta = \nabla \cdot \nabla = \nabla^2##.

My question is: once I take the dot product of the given gradient vector, will I be able to simplify into the Laplacian for spherical coordinates? I am asking, because it takes a lot of brute calculations to find out, and therefore I want to know if my initial math is correct.
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
You've expressed the partial derivatives in terms of ##\theta## and ##\phi##, but you've omitted the derivatives in terms of ##r##. Also, the vector is still in terms of the Cartesian basis vectors, rather than ##\hat r## etc.

The Laplacian has second derivatives with respect to ##x, y, z##, so you should expect second derivatives with respect to ##r, \theta, \phi## to appear.

So, you have some mistakes and misconceptions, I'm sorry to say.
 
  • Like
Likes   Reactions: docnet
PeroK said:
You've expressed the partial derivatives in terms of ##\theta## and ##\phi##, but you've omitted the derivatives in terms of ##r##. Also, the vector is still in terms of the Cartesian basis vectors, rather than ##\hat r## etc.

The Laplacian has second derivatives with respect to ##x, y, z##, so you should expect second derivatives with respect to ##r, \theta, \phi## to appear.

So, you have some mistakes and misconceptions, I'm sorry to say.
Where exactly do I start then?
 
Mayhem said:
Where exactly do I start then?
I just noticed that your derivatives are not right:

Mayhem said:
Given the definitions in "Relevant Equations", we can define the partial derivatives of ##x, y## and ##z##$$\begin{align*}
\frac{\partial }{\partial x} &= r\left(\cos(\theta)\cos(\phi)\frac{\partial }{\partial \theta} - \sin(\theta)\sin(\phi)\frac{\partial }{\partial \phi}\right ) \\
\frac{\partial }{\partial y} &= r\left(\cos(\theta)\sin(\phi)\frac{\partial }{\partial \theta} - \sin(\theta)\cos(\phi)\frac{\partial }{\partial \phi}\right ) \\
\frac{\partial }{\partial z} &= -r \sin(\theta) \frac{\partial }{\partial \theta}
\end{align*}$$
It's generally better to included test function to avoid mistakes:
$$\frac{\partial f }{\partial x} = \frac{\partial f}{\partial r}\frac{\partial r}{\partial x} + \frac{\partial f}{\partial \theta}\frac{\partial \theta}{\partial x} + \frac{\partial f}{\partial \phi}\frac{\partial \phi}{\partial x}$$
 
PeroK said:
I just noticed that your derivatives are not right:It's generally better to included test function to avoid mistakes:
$$\frac{\partial f }{\partial x} = \frac{\partial f}{\partial r}\frac{\partial r}{\partial x} + \frac{\partial f}{\partial \theta}\frac{\partial \theta}{\partial x} + \frac{\partial f}{\partial \phi}\frac{\partial \phi}{\partial x}$$
I am a little confused it seems. I cannot take ##r## to be constant?
 
Mayhem said:
I am a little confused it seems. I cannot take ##r## to be constant?
Definitely not. ##r## is one of the three coordinates.
 
PeroK said:
Definitely not. ##r## is one of the three coordinates.
I see. I found this and it seems what I am trying to accomplish isn't exactly a simple task (probably why my textbook omitted the derivation), but I will try to work through it.
 
Mayhem said:
I see. I found this and it seems what I am trying to accomplish isn't exactly a simple task (probably why my textbook omitted the derivation), but I will try to work through it.
That's even more work than I recall. There are quicker ways to do it using results for general coordinate systems.
 
PeroK said:
That's even more work than I recall. There are quicker ways to do it using results for general coordinate systems.
Hm.

I think I might have to backtrack a little and consider the same problem but in two dimensions, and then once I understand that, I can move on to the 3D case.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
29
Views
2K
Replies
2
Views
2K
Replies
13
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K