grindfreak
- 39
- 2
Homework Statement
So, I'm working through a relativity book and I'm having trouble deriving the Lorentz transformation for an arbitrary direction v=(v_{x},v_{y},v_{z}):
\[\begin{pmatrix}<br /> {ct}'\\ <br /> {x}'\\ <br /> {y}'\\ <br /> {z}'<br /> \end{pmatrix}=\begin{pmatrix}<br /> \gamma & -\gamma \beta _{x} & -\gamma \beta _{y} & -\gamma \beta _{z}\\ <br /> -\gamma \beta _{x}& 1+\alpha \beta ^{2}_{x} & \alpha \beta _{x}\beta _{y} & \alpha \beta _{x}\beta _{z} \\ <br /> -\gamma \beta _{y}& \alpha \beta _{y}\beta _{x} & 1+\alpha \beta ^{2}_{y} & \alpha \beta _{y}\beta _{z} \\ <br /> -\gamma \beta _{z}& \alpha \beta _{z}\beta _{x} & \alpha \beta _{z}\beta _{y} & 1+\alpha \beta ^{2}_{z}<br /> \end{pmatrix}\begin{pmatrix}<br /> ct\\ <br /> x\\ <br /> y\\ <br /> z<br /> \end{pmatrix}\]
where \[\beta =\frac{v}{c}\], \[\gamma =(1-\beta ^{2})^{-1/2}\] and \[\alpha =\frac{\gamma -1}{\beta ^{2}}\]
The Attempt at a Solution
I thought the best way to approach it would be to define four reference frames: S, S', S'' and S'''. Where S' is related to S by a boost in the x direction, S'' is related to S' by a boost in the y' direction and S''' is related to S'' by a boost in the z'' direction. This produces the transformations:
For S'->S
\[{ct}'=\gamma _{x}(ct-\beta _{x}x) \]
\[{x}'=\gamma _{x}(x-\beta _{x}ct) \]
\[{y}'=y \]
\[{z}'=z \]
For S''->S'
\[{ct}''=\gamma _{y}({ct}'-\beta _{y}{y}') \]
\[{x}''={x}' \]
\[{y}''=\gamma _{y}({y}'-\beta _{y}{ct}') \]
\[{z}''={z}' \]
For S'''->S''
\[{ct}'''=\gamma _{z}({ct}''-\beta _{z}{z}'') \]
\[{x}'''={x}'' \]
\[{y}'''={y}'' \]
\[{z}'''=\gamma _{z}({z}''-\beta _{z}{ct}'') \]
But when I substitute in I get:
\[{ct}'''=\gamma _{x} \gamma _{y}\gamma _{z}ct-\gamma _{x} \gamma _{y}\gamma _{z}\beta _{x}x-\gamma _{y}\gamma _{z}\beta _{y}y-\gamma _{z}\beta _{z}z\]
\[{x}'''=-\gamma _{x}\beta _{x}ct+\gamma _{x}x\]
\[{y}'''=-\gamma _{x}\gamma _{y}\beta _{y}ct+\gamma _{x}\gamma _{y}\beta _{x}\beta_{y}x+\gamma _{y}y\]
\[{z}'''=\gamma _{x}\gamma _{y}\beta _{z}ct+\gamma _{x}\gamma _{y}\beta _{x}\beta _{z}x+\beta _{y}\beta _{z}y+\gamma _{z}z\]
I suppose I would need to eliminate \[\gamma _{x}\], \[\gamma _{y}\] and \[\gamma _{z}\] in favor of \[\gamma\] but I guess I would just like to make sure I'm headed in the right direction before I undertake the calculation since:
\[\gamma _{x}\gamma _{y}\gamma _{z}=\frac{1}{\sqrt{(1-\beta _{x}^{2})(1-\beta _{y}^{2})(1-\beta _{z}^{2})}}=(\frac{1}{\gamma ^{2}}+\beta _{x}^{2}\beta _{y}^{2}+\beta _{x}^{2}\beta _{z}^{2}+\beta _{y}^{2}\beta _{z}^{2}-\beta _{x}^{2}\beta _{y}^{2}\beta _{z}^{2})^{-1/2}\]
Btw, I don't need a complete solution, I would just like to see if I have the right concept down to solve this problem.
Last edited: