Deriving the structure constants of the SO(n) group

Click For Summary
SUMMARY

The forum discussion focuses on deriving the structure constants of the SO(n) group, specifically the Lie algebra ##\mathfrak{so(n)##. The commutation relations are defined as ##([A_{ij},A_{mn}])_{st} = -i(A_{j[m}\delta_{n]i}-A_{i[m}\delta_{n]j})_{st}##, with the structure constants given by ##f_{ij,mn}^{ks} = \delta_{k[j}\delta_{i][m}\delta_{n]s}##. The discussion also highlights the redundancy of certain generators in the ##so(3)## algebra and the relationship between the structure constants of ##\mathfrak{so(n)## and ##so(3)##. The participants successfully derive the necessary equations and clarify the role of antisymmetry in the generators.

PREREQUISITES
  • Understanding of Lie algebras and their structure constants
  • Familiarity with the commutation relations in quantum mechanics
  • Knowledge of antisymmetric matrices and their properties
  • Basic concepts of group theory, particularly SO(n) groups
NEXT STEPS
  • Study the properties of Lie algebras, focusing on the derivation of structure constants
  • Learn about the implications of antisymmetry in matrix representations
  • Explore the relationship between different Lie groups and their algebras, particularly SO(3) and SO(n)
  • Investigate applications of structure constants in theoretical physics and geometry
USEFUL FOR

Mathematicians, physicists, and students of theoretical physics who are interested in group theory, Lie algebras, and their applications in quantum mechanics and geometry.

spaghetti3451
Messages
1,311
Reaction score
31
The commutation relations for the ##\mathfrak{so(n)}## Lie algebra is:##([A_{ij},A_{mn}])_{st} = -i(A_{j[m}\delta_{n]i}-A_{i[m}\delta_{n]j})_{st}##.where the generators ##(A_{ab})_{st}## of the ##\mathfrak{so(n)}## Lie algebra are given by:##(A_{ab})_{st} = -i(\delta_{as}\delta_{bt}-\delta_{at}\delta_{bs}) = -i\delta_{s[a}\delta_{b]t}##

where ##a,b## label the number of the generator, and ##s,t## label the matrix element.I would like to show that the structure constants ##f_{ij,mn}^{ks}## of the ##\mathfrak{so(n)}## Lie algebra such that##[A_{ij},A_{mn}] = if_{ij,mn}^{ks}A_{ks}##are given by##f_{ij,mn}^{ks} = \delta_{k[j}\delta_{i][m}\delta_{n]s}##.Can someone help me out with this?
 
Physics news on Phys.org
failexam said:
##([A_{ij},A_{mn}])_{st} = -i(A_{j[m}\delta_{n]i}-A_{i[m}\delta_{n]j})_{st}##.
...
I would like to show that the structure constants ##f_{ij,mn}^{ks}## of the ##\mathfrak{so(n)}## Lie algebra such that##[A_{ij},A_{mn}] = if_{ij,mn}^{ks}A_{ks}##

From these equations, you have
$$f_{ij,mn}^{ks}A_{ks}=-(A_{j[m}\delta_{n]i}-A_{i[m}\delta_{n]j}) .$$
You can expand the RHS using identities like ##A_{jm} = \delta_{jk}\delta_{ms} A_{ks}## to derive the form of the structure constants.
 
Thanks! I got it!
 
It is easy to show that the generators ##(A_{ab})_{st}## of the ##\mathfrak{so(n)}## Lie algebra given by

##(A_{ab})_{st} = -i(\delta_{as}\delta_{bt}-\delta_{at}\delta_{bs}) = -i\delta_{s[a}\delta_{b]t}##

reduce to the three generators ##A_{23},A_{31}, A_{12}## of the ##so(3)## Lie algebra.

The generators ##A_{ii}## for ##i=1,2,3## are redundant as they all equal to ##0##.
The generators ##A_{32},A_{13},A_{21}## are redundant as ##A_{32}=-A_{23},A_{13}=-A_{31},A_{21}=-A_{12}##.
The redundancy comes about because the matrices ##A_{ab}## themselves form the matrix elements of an antisymmetric matrix element.

Am I correct?
 
failexam said:
It is easy to show that the generators ##(A_{ab})_{st}## of the ##\mathfrak{so(n)}## Lie algebra given by

##(A_{ab})_{st} = -i(\delta_{as}\delta_{bt}-\delta_{at}\delta_{bs}) = -i\delta_{s[a}\delta_{b]t}##

reduce to the three generators ##A_{23},A_{31}, A_{12}## of the ##so(3)## Lie algebra.

The generators ##A_{ii}## for ##i=1,2,3## are redundant as they all equal to ##0##.
The generators ##A_{32},A_{13},A_{21}## are redundant as ##A_{32}=-A_{23},A_{13}=-A_{31},A_{21}=-A_{12}##.
The redundancy comes about because the matrices ##A_{ab}## themselves form the matrix elements of an antisymmetric matrix element.

Am I correct?

Yes, the generators are antisymmetric in both pairs of indices:
$$(A_{ab})_{st} = - (A_{ba})_{st} = -(A_{ab})_{ts} .$$
 
I would also like to show that the structure constants ##f_{ij,mn}^{ks}## of the ##\mathfrak{so(n)}## Lie algebra reduce to the structure constants ##\epsilon_{ij}^{k}## of the ##so(3)## Lie algebra defined as follows:

##[X_{p},X_{q}]=i\epsilon_{pqr}X_{r}##

where ##X_{1}=A_{23},X_{2}=A_{31},X_{3}=A_{12}##.

Now, however must I try, I cannot show that ##f_{ij,mn}^{ks} = \delta_{k[j}\delta_{i][m}\delta_{n]s}## reduces to ##\epsilon_{pqr}## under the above identification ##p=ij,q=mn,r=ks##.

To illustrate,

##f_{ij,mn}^{ks}##
##= \delta_{k[j}\delta_{i][m}\delta_{n]s}##
##= \delta_{kj}\delta_{i[m}\delta_{n]s}-\delta_{ki}\delta_{j[m}\delta_{n]s}##
##= \delta_{kj}\delta_{im}\delta_{ns}-\delta_{kj}\delta_{in}\delta_{ms}-\delta_{ki}\delta_{jm}\delta_{ns}+\delta_{ki}\delta_{jn}\delta_{ms}##

Now, ##\epsilon_{123} = 1##, but ##f_{23,31}^{12} \neq 1##.

What exactly is the problem?
 
Last edited:
For ##SO(3)## we can use the invariant ##\epsilon_{ijk}## to project a pair of indices onto a single index. So the expression that you should compute is ##\epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} f^{ks}_{ij,mn}##.
 
All right. Let me first perform the computation.

##\epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} f^{ks}_{ij,mn}##
##= \epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} (\delta_{kj}\delta_{im}\delta_{ns}-\delta_{kj}\delta_{in}\delta_{ms}-\delta_{ki}\delta_{jm}\delta_{ns}+\delta_{ki}\delta_{jn}\delta_{ms})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} - {\epsilon_b}^{nk}{\epsilon_c}^{sn} -{\epsilon_b}^{km}{\epsilon_c}^{ms}+{\epsilon_b}^{kn}{\epsilon_c}^{sn})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} + {\epsilon_b}^{nk}{\epsilon_c}^{ns} +{\epsilon_b}^{mk}{\epsilon_c}^{ms}+{\epsilon_b}^{nk}{\epsilon_c}^{ns})##
##= 4 \epsilon_{aks}{\epsilon_b}^{mk}{\epsilon_c}^{ms}##
##= 4 \epsilon_{aks}{\epsilon_m}^{kb}{\epsilon_m}^{sc}##
##= 4 \epsilon_{aks}(\delta^{ks}\delta^{bc}-\delta^{kc}\delta^{bs})##
##= -4 \epsilon_{acb}##
##= 4 \epsilon_{abc}##

Is there some way to get rid of the factor of 4 in front of ##\epsilon_{abc}##?
 
Last edited:
failexam said:
All right. Let me first perform the computation.

##\epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} f^{ks}_{ij,mn}##
##= \epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} (\delta_{kj}\delta_{im}\delta_{ns}-\delta_{kj}\delta_{in}\delta_{ms}-\delta_{ki}\delta_{jm}\delta_{ns}+\delta_{ki}\delta_{jn}\delta_{ms})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} - {\epsilon_b}^{nk}{\epsilon_c}^{sn} -{\epsilon_b}^{km}{\epsilon_c}^{ms}+{\epsilon_b}^{kn}{\epsilon_c}^{sn})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} + {\epsilon_b}^{nk}{\epsilon_c}^{ns} +{\epsilon_b}^{mk}{\epsilon_c}^{ms}+{\epsilon_b}^{nk}{\epsilon_c}^{ns})##
##= 4 \epsilon_{aks}{\epsilon_b}^{mk}{\epsilon_c}^{ms}##
##= 4 \epsilon_{aks}{\epsilon_m}^{kb}{\epsilon_m}^{sc}##
##= 4 \epsilon_{aks}(\delta^{ks}\delta^{bc}-\delta^{kc}\delta^{bs})##
##= -4 \epsilon_{acb}##
##= 4 \epsilon_{abc}##

Is there some way to get rid of the factor of 4 in front of ##\epsilon_{abc}##?

I get the same factor of 4. It turned out that I forgot some factors of 2 in the mapping I suggested. Let us define ##A_{ij} =\gamma \epsilon_{ijp} X_p## for some constant ##\gamma##. Then we can multiply this again by ##\epsilon## to show that ##X_p = (1/(2\gamma)) \epsilon_{pij} A_{ij}##. Now consider
$$ [X_p, X_q] = \frac{1}{4\gamma^2} \epsilon_{pij} \epsilon_{qmn} [A_{ij},A_{mn}]
= \frac{1}{4\gamma^2} \epsilon_{pij} \epsilon_{qmn} f^{ks}_{ij,mn} \gamma \epsilon_{ksr} X_r.$$
We find precisely the factor of 4 that we needed and can therefore set ##\gamma=1##.
 
  • #10
Thank you so much! I get it now!
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
980
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
1
Views
2K