Deriving the structure constants of the SO(n) group

In summary, we have shown that the generators of the ##\mathfrak{so(n)}## Lie algebra can be expressed in terms of the generators of the ##so(3)## Lie algebra, and that the structure constants of the two algebras are related by a factor of 4. This supports the idea that the ##so(3)## Lie algebra is a subalgebra of the ##\mathfrak{so(n)}## Lie algebra.
  • #1
spaghetti3451
1,344
33
The commutation relations for the ##\mathfrak{so(n)}## Lie algebra is:##([A_{ij},A_{mn}])_{st} = -i(A_{j[m}\delta_{n]i}-A_{i[m}\delta_{n]j})_{st}##.where the generators ##(A_{ab})_{st}## of the ##\mathfrak{so(n)}## Lie algebra are given by:##(A_{ab})_{st} = -i(\delta_{as}\delta_{bt}-\delta_{at}\delta_{bs}) = -i\delta_{s[a}\delta_{b]t}##

where ##a,b## label the number of the generator, and ##s,t## label the matrix element.I would like to show that the structure constants ##f_{ij,mn}^{ks}## of the ##\mathfrak{so(n)}## Lie algebra such that##[A_{ij},A_{mn}] = if_{ij,mn}^{ks}A_{ks}##are given by##f_{ij,mn}^{ks} = \delta_{k[j}\delta_{i][m}\delta_{n]s}##.Can someone help me out with this?
 
Physics news on Phys.org
  • #2
failexam said:
##([A_{ij},A_{mn}])_{st} = -i(A_{j[m}\delta_{n]i}-A_{i[m}\delta_{n]j})_{st}##.
...
I would like to show that the structure constants ##f_{ij,mn}^{ks}## of the ##\mathfrak{so(n)}## Lie algebra such that##[A_{ij},A_{mn}] = if_{ij,mn}^{ks}A_{ks}##

From these equations, you have
$$f_{ij,mn}^{ks}A_{ks}=-(A_{j[m}\delta_{n]i}-A_{i[m}\delta_{n]j}) .$$
You can expand the RHS using identities like ##A_{jm} = \delta_{jk}\delta_{ms} A_{ks}## to derive the form of the structure constants.
 
  • #3
Thanks! I got it!
 
  • #4
It is easy to show that the generators ##(A_{ab})_{st}## of the ##\mathfrak{so(n)}## Lie algebra given by

##(A_{ab})_{st} = -i(\delta_{as}\delta_{bt}-\delta_{at}\delta_{bs}) = -i\delta_{s[a}\delta_{b]t}##

reduce to the three generators ##A_{23},A_{31}, A_{12}## of the ##so(3)## Lie algebra.

The generators ##A_{ii}## for ##i=1,2,3## are redundant as they all equal to ##0##.
The generators ##A_{32},A_{13},A_{21}## are redundant as ##A_{32}=-A_{23},A_{13}=-A_{31},A_{21}=-A_{12}##.
The redundancy comes about because the matrices ##A_{ab}## themselves form the matrix elements of an antisymmetric matrix element.

Am I correct?
 
  • #5
failexam said:
It is easy to show that the generators ##(A_{ab})_{st}## of the ##\mathfrak{so(n)}## Lie algebra given by

##(A_{ab})_{st} = -i(\delta_{as}\delta_{bt}-\delta_{at}\delta_{bs}) = -i\delta_{s[a}\delta_{b]t}##

reduce to the three generators ##A_{23},A_{31}, A_{12}## of the ##so(3)## Lie algebra.

The generators ##A_{ii}## for ##i=1,2,3## are redundant as they all equal to ##0##.
The generators ##A_{32},A_{13},A_{21}## are redundant as ##A_{32}=-A_{23},A_{13}=-A_{31},A_{21}=-A_{12}##.
The redundancy comes about because the matrices ##A_{ab}## themselves form the matrix elements of an antisymmetric matrix element.

Am I correct?

Yes, the generators are antisymmetric in both pairs of indices:
$$(A_{ab})_{st} = - (A_{ba})_{st} = -(A_{ab})_{ts} .$$
 
  • #6
I would also like to show that the structure constants ##f_{ij,mn}^{ks}## of the ##\mathfrak{so(n)}## Lie algebra reduce to the structure constants ##\epsilon_{ij}^{k}## of the ##so(3)## Lie algebra defined as follows:

##[X_{p},X_{q}]=i\epsilon_{pqr}X_{r}##

where ##X_{1}=A_{23},X_{2}=A_{31},X_{3}=A_{12}##.

Now, however must I try, I cannot show that ##f_{ij,mn}^{ks} = \delta_{k[j}\delta_{i][m}\delta_{n]s}## reduces to ##\epsilon_{pqr}## under the above identification ##p=ij,q=mn,r=ks##.

To illustrate,

##f_{ij,mn}^{ks}##
##= \delta_{k[j}\delta_{i][m}\delta_{n]s}##
##= \delta_{kj}\delta_{i[m}\delta_{n]s}-\delta_{ki}\delta_{j[m}\delta_{n]s}##
##= \delta_{kj}\delta_{im}\delta_{ns}-\delta_{kj}\delta_{in}\delta_{ms}-\delta_{ki}\delta_{jm}\delta_{ns}+\delta_{ki}\delta_{jn}\delta_{ms}##

Now, ##\epsilon_{123} = 1##, but ##f_{23,31}^{12} \neq 1##.

What exactly is the problem?
 
Last edited:
  • #7
For ##SO(3)## we can use the invariant ##\epsilon_{ijk}## to project a pair of indices onto a single index. So the expression that you should compute is ##\epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} f^{ks}_{ij,mn}##.
 
  • #8
All right. Let me first perform the computation.

##\epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} f^{ks}_{ij,mn}##
##= \epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} (\delta_{kj}\delta_{im}\delta_{ns}-\delta_{kj}\delta_{in}\delta_{ms}-\delta_{ki}\delta_{jm}\delta_{ns}+\delta_{ki}\delta_{jn}\delta_{ms})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} - {\epsilon_b}^{nk}{\epsilon_c}^{sn} -{\epsilon_b}^{km}{\epsilon_c}^{ms}+{\epsilon_b}^{kn}{\epsilon_c}^{sn})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} + {\epsilon_b}^{nk}{\epsilon_c}^{ns} +{\epsilon_b}^{mk}{\epsilon_c}^{ms}+{\epsilon_b}^{nk}{\epsilon_c}^{ns})##
##= 4 \epsilon_{aks}{\epsilon_b}^{mk}{\epsilon_c}^{ms}##
##= 4 \epsilon_{aks}{\epsilon_m}^{kb}{\epsilon_m}^{sc}##
##= 4 \epsilon_{aks}(\delta^{ks}\delta^{bc}-\delta^{kc}\delta^{bs})##
##= -4 \epsilon_{acb}##
##= 4 \epsilon_{abc}##

Is there some way to get rid of the factor of 4 in front of ##\epsilon_{abc}##?
 
Last edited:
  • #9
failexam said:
All right. Let me first perform the computation.

##\epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} f^{ks}_{ij,mn}##
##= \epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} (\delta_{kj}\delta_{im}\delta_{ns}-\delta_{kj}\delta_{in}\delta_{ms}-\delta_{ki}\delta_{jm}\delta_{ns}+\delta_{ki}\delta_{jn}\delta_{ms})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} - {\epsilon_b}^{nk}{\epsilon_c}^{sn} -{\epsilon_b}^{km}{\epsilon_c}^{ms}+{\epsilon_b}^{kn}{\epsilon_c}^{sn})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} + {\epsilon_b}^{nk}{\epsilon_c}^{ns} +{\epsilon_b}^{mk}{\epsilon_c}^{ms}+{\epsilon_b}^{nk}{\epsilon_c}^{ns})##
##= 4 \epsilon_{aks}{\epsilon_b}^{mk}{\epsilon_c}^{ms}##
##= 4 \epsilon_{aks}{\epsilon_m}^{kb}{\epsilon_m}^{sc}##
##= 4 \epsilon_{aks}(\delta^{ks}\delta^{bc}-\delta^{kc}\delta^{bs})##
##= -4 \epsilon_{acb}##
##= 4 \epsilon_{abc}##

Is there some way to get rid of the factor of 4 in front of ##\epsilon_{abc}##?

I get the same factor of 4. It turned out that I forgot some factors of 2 in the mapping I suggested. Let us define ##A_{ij} =\gamma \epsilon_{ijp} X_p## for some constant ##\gamma##. Then we can multiply this again by ##\epsilon## to show that ##X_p = (1/(2\gamma)) \epsilon_{pij} A_{ij}##. Now consider
$$ [X_p, X_q] = \frac{1}{4\gamma^2} \epsilon_{pij} \epsilon_{qmn} [A_{ij},A_{mn}]
= \frac{1}{4\gamma^2} \epsilon_{pij} \epsilon_{qmn} f^{ks}_{ij,mn} \gamma \epsilon_{ksr} X_r.$$
We find precisely the factor of 4 that we needed and can therefore set ##\gamma=1##.
 
  • #10
Thank you so much! I get it now!
 

1. What is the SO(n) group and why is it important in physics?

The SO(n) group, also known as the special orthogonal group, is a mathematical concept used to describe rotations and reflections in n-dimensional space. In physics, this group is important because it is often used to study and understand the symmetries of physical systems, such as the rotational symmetry of a rigid body.

2. How are the structure constants of the SO(n) group derived?

The structure constants of the SO(n) group can be derived using the Cartan-Killing form, which is a bilinear form that measures the algebraic structure of a Lie group. This involves using the commutator of the group's generators to calculate the structure constants.

3. What is the significance of the structure constants in the study of the SO(n) group?

The structure constants provide important information about the algebraic structure of the SO(n) group. They can be used to determine the group's Lie algebra, which describes the group's infinitesimal transformations. They also play a crucial role in understanding the group's representation theory.

4. Are there any applications of the SO(n) group in physics?

Yes, the SO(n) group has many applications in physics, particularly in the study of rotational and reflection symmetries. It is used in various areas of physics, including classical mechanics, quantum mechanics, and field theory. For example, the SO(2) group is used to describe the rotational symmetry of a 2-dimensional system, while the SO(3) group is used to describe the rotational symmetry of a 3-dimensional system.

5. Are there other methods for determining the structure constants of the SO(n) group?

Yes, there are other methods for deriving the structure constants of the SO(n) group, such as using the group's Lie algebra or using the group's representation theory. However, the use of the Cartan-Killing form is a common and efficient method for calculating these constants.

Similar threads

  • Linear and Abstract Algebra
Replies
7
Views
2K
  • Linear and Abstract Algebra
Replies
3
Views
1K
  • Calculus and Beyond Homework Help
Replies
1
Views
1K
Replies
3
Views
2K
  • Advanced Physics Homework Help
Replies
1
Views
632
Replies
3
Views
614
  • High Energy, Nuclear, Particle Physics
Replies
1
Views
1K
  • Linear and Abstract Algebra
Replies
8
Views
1K
  • Calculus and Beyond Homework Help
Replies
4
Views
1K
  • General Math
Replies
2
Views
2K
Back
Top