Charles_Henry
- 14
- 0
Homework Statement
1. Derive the Yang-Mills-Higgs equations of motion
(D_{v}F^{\mu, v})^{a} = - \epsilon^{abc}\phi^{b}(D^{\mu}\phi)^{c} and (D_{\mu}D^{\mu}\phi)^{a} = - c(|\phi|^{2} - v^{2}) \phi^{a}
from \mathcal{L} = - \frac{1}{4} F^{a}_{\mu v}F^{\mu v a} + \frac{1}{2}D_{\mu}\phi^{a}D^{\mu}\phi^{a} - U(\phi)
where is c is a constant.
2. Show that in SU(2) Yang-Mills-Higgs theory the general solution to the equation D_{i}\hat{\phi}=0 with |\hat{\phi}| = 1 is
A^{a}_{i} = -\epsilon^{abc}\partial_{i}\hat{\phi}^{b}\hat{\phi}^{c} + k_{i}\hat{\phi}^{a}
The attempt at a solution
1st question:
Assume finiteness of the energy by
\phi \rightarrow v D_{mu} \phi \rightarrow 0 F_{{\mu}v} \rightarrow 0 as r \rightarrow \infty
Let
F = \frac{1}{2} F_{{\mu},v}dx^{\mu} \wedge dx{v} = dA + A \wedge A be
the gauge field of A.
with components
F_{{\mu}v} = \partial_{\mu}A_{v} - \partial_{v}A_{\mu} + [ A_{\mu}, A_{v}] = [D_{\mu}, D_{v}]
We define gauge identities (A, A') and (F, F') where
A' = gAg^{-1} - dgg^{-1} F' = gFg^{-1} and g = g(x^{\mu}) \in G
which satisfies the bianchi identity
DF = dF + [A,F] = d^2 A + dA \wedge A - A \wedge dA + A \wedge dA + A^3 - dA \wedge A - A^3 = 0
The field
\phi: \mathbb{R}^{D+1} \rightarrow \mathfrak{g}
D\phi = d\phi + [A, \phi] with gauge transformation,
\phi' = g \phi g^{-1}
if G = SU(2) choose a basis T_{a} , a =1,2,3
for the algebra of anti hermitian (2x2 matrices), such that
[T_{a},T_{b}] = - \epsilon_{abc}T_{c} <br /> <br /> T_{a} = \frac{1}{2} i\sigma_{a} where \sigma_{a} are pauli matrices.
Tr (T_{a}T_{b}) = - \frac{1}{2} \delta_{ab}
a general group element is g = exp (\alpha^{a}T_{a}) with \alpha^{a} being real. The components of D/phi and F with respect to the basis are given by
(D_{\mu} \phi)^{a} = \partial_{\mu} \phi^{a} - \epsilon^{abc} A^{b}_{\mu} \phi^{c} and F^{a}_{{\mu}v} = \partial_{\mu}A^{a}_{v} - \partial_{v}A^{a}_{\mu} - \epsilon^{abc}A^{b}_{\mu}A^{c}_{v}
when D+1 = 4 the dual of the field tensor is
(\ast F)_{{\mu}v} = \frac{1}{2} \epsilon_{{\mu}v{\alpha}{\beta}}F^{{\alpha}{\beta}}
we introduce a two form F = (\frac{1}{2}) F_{{\mu}v}dx^{\mu} \wedge dx^{v} (Self-Dual)
or \ast F = F \ast F = - F (Anti-Self-Dual)
- Tr (F \wedge \ast F) = - \frac{1}{2} Tr (F_{{\mu}v} F^{{\mu}v})d^{4}x \frac{1}{4} F^{a}_{{\mu}v}F^{{\mu}va}d^{4}x
where d^{4}x = \frac{1}{24}\epsilon_{{\mu} v {\alpha} {\beta} } dx^{\mu} \wedge dx^{v} \wedge dx^{\alpha} \wedge dx^{\beta}
to be continued...