Describe a locus Algebraically

  • Thread starter jvercetti
  • Start date
  • #1
6
0

Homework Statement


Describe the locus algebraically. Then graph the locus and describe the locus geometrically. Prove that the locus is the perpendicular bisector of the line joining the two points.
Locus of points equidistant from (0,0) and (-6, -6)

Homework Equations


None that I can think of


The Attempt at a Solution


Here's what I have done so far:
Locus of points equidistant from (-3,0) and (5,0)
Geometric description: P(x,y) where PA= PB where A = (-3,0) and B is always isosceles.
The locus is the perpendicular bisector of line AB. This occurs because the locus crosses line AB at its midpoint.
Algebraic description: Confused Here :shy:
Graph:
MathsQuestion.jpg



Thx in advance
 

Answers and Replies

  • #2
123
0
Graphically - I cannot see the locus.
Geometrically - B is isoceles? what is?
You have not yet shown the locus is a straight line, or that it is perpendicular to AB, in fact you have shown it at all.

Algebraically - what is the equation of the locus
 
  • #3
HallsofIvy
Science Advisor
Homework Helper
41,833
962
?? In the problem statement you say "Locus of points equidistant from (0,0) and (-6, -6)" but in attempt at a solution you say "Locus of points equidistant from (-3,0) and (5,0)". Which is it?

In either case, you are correct that, geometrically, the locus is the perpendicular bisector of the line segment having those endpoints.

The "algebraic description" means the equation of that line. What are the coordinates of the midpoint of the given line segement? What is the slope of the line through the given points? What is the slope of the line perpendicular to that?

Finally, your graph shows (-3, 0) and (5,0) (but not (0,0) and (-6, -6)) and shows one example of a point on the locus but does not show the locus which is what you are asked to graph.
 
  • #4
286
0
"The locus is the perpendicular bisector of line AB"

Actually, that should be "the locus is the perpendicular bisector of line segment AB." So, you just need the equation of the perpendicular bisector of that segment.
 
  • #5
6
0
Ok sorry.. I found the mistake I was making with the question.. Sorry about typing the question wrong.. I mixed two questions up.. Anyways the question I had, I found the answer to.. Sorry for the trouble
 

Related Threads on Describe a locus Algebraically

  • Last Post
Replies
17
Views
4K
  • Last Post
Replies
1
Views
951
  • Last Post
Replies
2
Views
1K
  • Last Post
2
Replies
29
Views
4K
  • Last Post
Replies
1
Views
814
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
5
Views
4K
  • Last Post
Replies
5
Views
2K
  • Last Post
Replies
15
Views
4K
  • Last Post
Replies
4
Views
7K
Top