Description of how to solve six middle school geometry problems

Click For Summary
SUMMARY

This discussion provides a detailed explanation of solving a middle school geometry problem using the Pythagorean theorem. The problem involves calculating the lengths of sides in right triangles formed by a circle and its diameter. Key steps include identifying right triangles, applying the Pythagorean theorem, and solving for unknown lengths, ultimately finding that the length of side BC is 6√5. The discussion emphasizes the importance of understanding geometric relationships and theorems in solving such problems.

PREREQUISITES
  • Understanding of the Pythagorean theorem
  • Knowledge of right triangles and their properties
  • Familiarity with basic algebraic manipulation
  • Ability to interpret geometric diagrams
NEXT STEPS
  • Study the properties of circles and tangents in geometry
  • Learn advanced applications of the Pythagorean theorem
  • Explore geometric proofs involving right triangles
  • Practice solving similar middle school geometry problems
USEFUL FOR

Middle school students, parents assisting with math homework, and educators looking for effective methods to explain geometry concepts.

Mark Powell
Messages
1
Reaction score
0
My daughter needs some math assistance that I am not able to help her on. I would like someone who is experienced in middle school math (12-14 year olds) and who can explain how to go about each of these problems. The actual test is in 12 hours and will have different problems. But these six have been given as practice ones. I need to find her some help quickly. I do not want just the answers; I would really need the explanation of the answers.

If you can offer feedback on only a couple, that would be greatly appreciated too!

www.wordscapes.com/emmy/math/geometry2.png

Thanks!

Mark
 
Mathematics news on Phys.org
Hi Mark Powell, welcome to MHB!:)

For the first problem, the only formula that you required to use to achieve to the result is the Pythagoras' theorem, where it states that the square of the hypotenuse is equal to the sum of the squares of the other two sides.

View attachment 2610

First, join $BG$ and since $CB$ is a tangent at $B$, we know $AB$ and $CB$ are perpendicular. Thus, we have one right triangle $ABC$.

Next, we're told that $AB$ is the diameter of the circle centered at $O$, so, $\angle AGB=90^{\circ}$. We can tell also $\angle BGC=90^{\circ}$ by the supplementary angle theorem. Therefore both $BGA$ and $BCG$ are right triangles.

[TABLE="class: grid, width: 1000"]
[TR]
[TD]Triangle $AGB$:[/TD]
[TD]Triangle $BGC$:[/TD]
[TD]Triangle $ABC$:[/TD]
[/TR]
[TR]
[TD]Now, we apply the Pythagoras' theorem to the right triangle $AGB$ and note that $AB=2\text{radius}=2(6)=12$, we have:[/TD]
[TD]Again, reapply the Pythagoras' theorem to the right triangle $BGC$, we have:[/TD]
[TD]So Pythagoras' theorem tells us for the third time that:[/TD]
[/TR]
[TR]
[TD]$AG^2+BG^2=AB^2$

$8^2+BG^2=12^2$ this gives

$BG^2=80$[/TD]
[TD]$BG^2+CG^2=BC^2$

Remember that our aim is to find the value for $BC$ and we don't have the value for $CG$ yet, so we need to look for it by considering the right triangle $ABC$.[/TD]
[TD]$AB^2+BC^2=AC^2$

$12^2+BC^2=(AG+CG)^2$ $(AC=AG+CG)$

$12^2+BC^2=(8+CG)^2$ $(AG=8)$

By expanding the equation, we get:

$12^2+BC^2=64+18CG+CG^2$

$12^2+(BC^2-CG^2)=64+18CG$(*)[/TD]
[/TR]
[/TABLE]Up to this point, we need to be aware of what we have already found, e.g. from $BG^2+CG^2=BC^2$ and $BG^2=80$, the difference for $BC^2$ and $CG^2$ is $BC^2-CG^2=BG^2=80$

If we replace it into the equation (*), we get:

$12^2+80=64+18CG$

Solve this equation for $CG$ we see that

$\dfrac{12^2+80-64}{18}=CG$

$CG=10$

The last step would be to substitute the values for $CG=10$ and $BG^2=80$ into the equation $BG^2+CG^2=BC^2$, we find that $BC^2=80+10^2=180=36(5)$, therefore $BC=6\sqrt{5}$.
 

Attachments

  • Q1.JPG
    Q1.JPG
    17.6 KB · Views: 98

Similar threads

  • · Replies 30 ·
2
Replies
30
Views
10K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
698
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 28 ·
Replies
28
Views
4K