MHB Determine the solution set of the system using the echelon form

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $\displaystyle{a:=\begin{pmatrix}2 & 1 & 0 & 5 \\ 1 & 0 & 1 & 1 \\ 4 & 1 &2 & 7\end{pmatrix}\in \mathbb{R}^{3\times4}}$ and $\displaystyle{b_1:=\begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix} , \ b_2:=\begin{pmatrix}-2 \\ 1 \\ 0\end{pmatrix} \in \mathbb{R}^3}$.

I applied the Gauss algorithm to get the echelon form of the matrix $a$ :
\begin{align*}\begin{pmatrix}2 & 1 & 0 & 5 \\ 1 & 0 & 1 & 1 \\ 4 & 1 &2 & 7\end{pmatrix} & \ \overset{R_2:R_2-\frac{1}{2}\cdot R_1}{\longrightarrow} \ \begin{pmatrix}2 & 1 & 0 & 5 \\ 0 & -\frac{1}{2} & 1 & -\frac{3}{2} \\ 4 & 1 &2 & 7\end{pmatrix} \\ &\ \overset{R_3:R_2-2\cdot R_1}{\longrightarrow} \ \begin{pmatrix}2 & 1 & 0 & 5 \\ 0 & -\frac{1}{2} & 1 & -\frac{3}{2} \\ 0 & -1 &2 & -3\end{pmatrix}\\ &\ \overset{R_3:R_2-2\cdot R_2}{\longrightarrow} \ \begin{pmatrix}2 & 1 & 0 & 5 \\ 0 & -\frac{1}{2} & 1 & -\frac{3}{2} \\ 0 & 0 &0 & 0\end{pmatrix}\end{align*}

Then I want to determine the solution set of the system $ax=b_i$ using the echelon form for $i=1$ and $i=2$.

Does this mean that we can use the echelon form of $a$ to calculate the solution or do we use the echelon form of the extended matrix $(a\mid b_i)$ ? (Wondering)
 
Physics news on Phys.org
mathmari said:
Then I want to determine the solution set of the system $ax=b_i$ using the echelon form for $i=1$ and $i=2$.

Does this mean that we can use the echelon form of $a$ to calculate the solution or do we use the echelon form of the extended matrix $(a\mid b_i)$ ?

Hey mathmari!

I'm afraid that we'll have to use the echelon form of the extended matrix $(a\mid b_i)$. (Thinking)

Alternatively we could use the echelon form of the extended matrix $(a\mid I_3)$ where $I_3$ is the 3x3 identity matrix. (Thinking)
 
You can do both problems at once by row reducing
\begin{pmatrix}2 & 1 & 0 & 5 & 1 & -2 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 4 & 1 & 2 & 7 & 1 & 0\end{pmatrix} where the last two columns are b_1 and b_2.

Klas Van Aarsen's suggestion that you row reduce
\begin{pmatrix}2 & 1 & 0 & 5 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0\\ 4 & 1 & 2 & 7 & 0 & 0 & 1 \end{pmatrix}
uses the fact that once you have row reduced A, the same operations will have converted the identity matrix to A^{-1}.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
31
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K