MHB Determine the solution set of the system using the echelon form

Click For Summary
The discussion focuses on determining the solution set of the system using the echelon form of a given matrix. Participants clarify that to solve the system \( ax = b_i \), one should use the echelon form of the extended matrix \( (a \mid b_i) \). An alternative approach suggested involves using the echelon form of the extended matrix with the identity matrix. Additionally, a method is proposed to row reduce a combined matrix that includes both \( b_1 \) and \( b_2 \) simultaneously. The conversation emphasizes the importance of using the correct matrix form for accurate solutions.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $\displaystyle{a:=\begin{pmatrix}2 & 1 & 0 & 5 \\ 1 & 0 & 1 & 1 \\ 4 & 1 &2 & 7\end{pmatrix}\in \mathbb{R}^{3\times4}}$ and $\displaystyle{b_1:=\begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix} , \ b_2:=\begin{pmatrix}-2 \\ 1 \\ 0\end{pmatrix} \in \mathbb{R}^3}$.

I applied the Gauss algorithm to get the echelon form of the matrix $a$ :
\begin{align*}\begin{pmatrix}2 & 1 & 0 & 5 \\ 1 & 0 & 1 & 1 \\ 4 & 1 &2 & 7\end{pmatrix} & \ \overset{R_2:R_2-\frac{1}{2}\cdot R_1}{\longrightarrow} \ \begin{pmatrix}2 & 1 & 0 & 5 \\ 0 & -\frac{1}{2} & 1 & -\frac{3}{2} \\ 4 & 1 &2 & 7\end{pmatrix} \\ &\ \overset{R_3:R_2-2\cdot R_1}{\longrightarrow} \ \begin{pmatrix}2 & 1 & 0 & 5 \\ 0 & -\frac{1}{2} & 1 & -\frac{3}{2} \\ 0 & -1 &2 & -3\end{pmatrix}\\ &\ \overset{R_3:R_2-2\cdot R_2}{\longrightarrow} \ \begin{pmatrix}2 & 1 & 0 & 5 \\ 0 & -\frac{1}{2} & 1 & -\frac{3}{2} \\ 0 & 0 &0 & 0\end{pmatrix}\end{align*}

Then I want to determine the solution set of the system $ax=b_i$ using the echelon form for $i=1$ and $i=2$.

Does this mean that we can use the echelon form of $a$ to calculate the solution or do we use the echelon form of the extended matrix $(a\mid b_i)$ ? (Wondering)
 
Physics news on Phys.org
mathmari said:
Then I want to determine the solution set of the system $ax=b_i$ using the echelon form for $i=1$ and $i=2$.

Does this mean that we can use the echelon form of $a$ to calculate the solution or do we use the echelon form of the extended matrix $(a\mid b_i)$ ?

Hey mathmari!

I'm afraid that we'll have to use the echelon form of the extended matrix $(a\mid b_i)$. (Thinking)

Alternatively we could use the echelon form of the extended matrix $(a\mid I_3)$ where $I_3$ is the 3x3 identity matrix. (Thinking)
 
You can do both problems at once by row reducing
\begin{pmatrix}2 & 1 & 0 & 5 & 1 & -2 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 4 & 1 & 2 & 7 & 1 & 0\end{pmatrix} where the last two columns are b_1 and b_2.

Klas Van Aarsen's suggestion that you row reduce
\begin{pmatrix}2 & 1 & 0 & 5 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0\\ 4 & 1 & 2 & 7 & 0 & 0 & 1 \end{pmatrix}
uses the fact that once you have row reduced A, the same operations will have converted the identity matrix to A^{-1}.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
31
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K