Determine the velocity of a particle in mass spectrometry

AI Thread Summary
To determine the velocity of a particle in mass spectrometry, the relationship between potential energy (Ep) and kinetic energy (Ec) must be correctly applied. The equation Ep = 0.5 (sigma(i) qiVi) is valid for multiple charges, while for a single particle in an external field, Ep simplifies to U = qV. This distinction is crucial to avoid misapplication of the formulas. Clarification is needed on the origin of the equation Ec(f) = Ec(i) - Ec(f), as it appears to be incorrectly stated. Understanding the context and correct application of these equations is essential for accurate calculations.
duchuy
Messages
79
Reaction score
3
Homework Statement
V=3000V, B= 0,035 T, m = m = 2.10^(-26) kg, q = e
Relevant Equations
x
Hi, I am trying to determine the velocity of the particle with the mass m coming out of the acclerator.
I tried writing :
Ep(i) + Ec(i) = Ep(f) + Ec(f)
Ec(f) = Ec(i) - Ec(f)
But at this step, I'm no longer sure how to express Ep with V because :
In my textbook, it's written :
Ep = 0,5 (sigma(i) qiVi)
But I am not sure if I am supposed to put that 0,5 in this case or not, which would imply Ep = qV only.

Ep = potential energy
Ec = Kinetic energy
Sorry in advance if these aren't notations that are used in English.

Thank you so much for your help!
 
Physics news on Phys.org
duchuy said:
Homework Statement:: V=3000V, B= 0,035 T, m = m = 2.10^(-26) kg, q = e
Relevant Equations:: x

Ep = 0,5 (sigma(i) qiVi)
This is true for a collection of charges where the potentials are due to the same charges you are considering. This is to avoid double counting because in actuality the potentials are between pairs of charges. The text you are reading should explain this.

If you are considering a single particle in an external field, then potential energy is U = qV. This is an example of the need to understand formulae that you find and to make sure they are applicable.
 
Oh okay thank you sir!
 
A diagram would help in understanding what the symbols and the formulae mean.
I am not sure where the second formula
Ec(f) = Ec(i) - Ec(f), comes from.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top