Let Q denote the field of rational numbers and R denote the field of real numbers. Determine whether or not set S = {r + s√2 | r, s € Q} is a subfield of R.
Last edited:
Related Calculus and Beyond Homework News on Phys.org
Let Q denote the field of rational numbers and R denote the field of real numbers. Determine whether or not set S = {r + s√2 | r, s € Q} is a subfield of R.
That's better. Just show S is closed under the field axioms. The big question is if a and b are in S is a/b in S? If b=r+sqrt(2)s it's useful to multiply the numerator and denominator of a/b by (r-sqrt(2)s).
We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling We Value Civility
• Positive and compassionate attitudes
• Patience while debating We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving