Proving the existence of a real exponential function

  • #1
Portuga
56
6
Homework Statement
Proof that ##a^r < \gamma < a^s## for all rational ##r## and ##s##, ##r<x<s##, and ##x \in \mathbb{R}## known.
Relevant Equations
Assume that ##f(x)=a^x## is defined only for ##x \in \mathbb{Q}##. Assume that ##f(x)## is strictly growing.
Lemma 1.
If ##a>1## is a know real, ##\forall \varepsilon > 0##, ##\exists n \in \mathbb{N}## such that $$a^{\frac{1}{n}} - 1 < \varepsilon$$.
Lemma 2.
If ##a>1## and ##x## are a known reals, ##\forall \varepsilon > 0##, ##\exists r, s \in \mathbb{Q}##, ##r<x<s## such that $$a^s - a^r < \varepsilon$$.
Ok, first I tried to show that ##A = \left \{a^{r}|r\in\mathbb{Q},r<x \right \}## does not have a maximum value.
Assume ##\left\{ a^{r}\right\}## has a maximum, ##a^{r_m}##. By this hypothesis, ##r_{m}<x## and ##r_{m}>r\forall r\neq r_{m}\in\mathbb{Q}##. Consider now that ## q\in\mathbb{Q}|q>0## such that $$ q<x-r_{m}.$$ Of course, $$a^{q}<a^{x},$$because ##q<x##.
As ##q>0##, ##r_{m}+q>r_{m}##, a contradiction. So, ##A## does not have a maximum value.
If ##x## is a rational, ##a^x## is the supreme for ##A## and the infimus for ##B=\left\{ a^{s}|s\in\mathbb{Q},s>x\right\}## and the proof is finished.
If not, by Lemma 2, there are ##r_1## and ##s_1##, ##r_1 \in A##, ##s_1 \in B## so that $$a^{s_{1}}-a^{r_{1}}<\epsilon.$$
Now, if so, then ##a^{r}=a^{s}## and the suprema and infimus of ##A## and ##B## are equal.
 
Physics news on Phys.org
  • #2
Is the statem you are trying to prove true for all rational number? E.g. for 0 < a < 1
and others
 
  • #3
Yes, for rationals, ##a \in \mathbb{R}##, ##a>1##.
 
Last edited:
  • #4
Now I see that I have made a real mess.
Let me try to make things more clear.
Homework Statement: consider ##a>1## a known real number. Prove that, for all real ##x##, there is only one real ##\gamma## such that $$a^r<\gamma<a^s$$ for any rationals ##r## and ##s##, with ##r<x<s##.
Relevant Equations: ##\max A ## is the maximum element of ##A##. The upper quote of a set ##A## is a value greater than any of its elements. The supremum of a set is its smallest upper quote.

My attempt of a solution.
The set ##A=\left\{ a^{r}|r\in\mathbb{Q},r<x\right\}## is not empty and superiorly limited by any ##a^s##, ##s## rational and ##s>x##; so this set has a supremum, but not a maximum.
To show that it has not a maximum, suppose that ##r_m## is it. Thus, ##r_{m}<x## and ##r_{m}>r\forall r\neq r_{m}\in A##. But it is also possible to generate a rational ##q\in \mathbb{Q}|q>0## such that $$q<x-r_{m},$$ using $$q=r_{m}+\frac{1}{a},$$ ##a## being the least integer for which ## r_{m}+\frac{1}{a} < x.## It is clear that ##q+r_m<x##, so it is in ##A## and ##q+r_m>r_m## (because ##\frac{1}{a}>0)## contradicting the initial hypothesis that ##r_m## is a maximum.
Using analogous reasoning, it is proved that ##B=\left\{ a^{s}|r\in\mathbb{Q},s>x\right\}## has a infimum but not a minimum.
This should make evident that $$a^r < \gamma < a^s.$$
Is this a correct reasoning?
 
Last edited:
  • Like
Likes Delta2
  • #5
Not sure if your proof that A doesn't have a maximum correct, however I think what is definitely needed is to prove that $$supA=infB(=\gamma)$$

EDIT: Sorry I only read your second post, now that I read your first post, you try there to prove that ##supA=infB## but I don't understand that proof. I have slept only 4 hours last night, I 'll come back to this when I have slept more.
 
Last edited:
  • Like
Likes Portuga
  • #6
Delta2 said:
Not sure if your proof that A doesn't have a maximum correct, however I think what is definitely needed is to prove that $$supA=infB(=\gamma)$$

EDIT: Sorry I only read your second post, now that I read your first post, you try there to prove that ##supA=infB## but I don't understand that proof. I have slept only 4 hours last night, I 'll come back to this when I have slept more.
Ok, thank you very much.
 
Back
Top