MHB Determining a determinant using recurrence relations

karseme
Messages
13
Reaction score
0
I'm a little stuck here. I should determine the following determinant. I first tried to simplify it a little by using elemntary transformations. And then I did Laplace expansion on the last row.

$\begin{vmatrix}2 & 2 & \cdots & 2 & 2 & 1 \\ 2 & 2 & \cdots & 2 & 2 & 2 \\ 2 & 2 & \cdots & 3 & 2 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 2 & n-1 & \cdots & 2 & 2 & 2 \\ n & 2 & \cdots & 2 & 2 & 2\end{vmatrix}=\begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 2 \\ 0 & 0 & \cdots & 1 & 0 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & n-3 & \cdots & 0 & 0 & 2 \\ n-2 & 0 & \cdots & 0 & 0 & 2\end{vmatrix} \\ =(-1)^{n+1} \cdot (n-2) \cdot \begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 2 \\ 0 & 0 & \cdots & 1 & 0 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & n-4 & \cdots & 0 & 0 & 2 \\ n-3 & 0 & \cdots & 0 & 0 & 2\end{vmatrix} + (-1)^{2n} \cdot 2 \cdot \begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & n-3 & \cdots & 0 & 0 & 0\end{vmatrix}$.

The second determinant is equal to 0. And the first determinant is of the same form as the initial, just one degree smaller.
We have recursion here. I used labels:

$D_n=\begin{vmatrix}2 & 2 & \cdots & 2 & 2 & 1 \\ 2 & 2 & \cdots & 2 & 2 & 2 \\ 2 & 2 & \cdots & 3 & 2 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 2 & n-1 & \cdots & 2 & 2 & 2 \\ n & 2 & \cdots & 2 & 2 & 2\end{vmatrix}=\begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 2 \\ 0 & 0 & \cdots & 1 & 0 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & n-3 & \cdots & 0 & 0 & 2 \\ n-2 & 0 & \cdots & 0 & 0 & 2\end{vmatrix}$

I have:

$D_n=(-1)^{n+1} \cdot (n-2) \cdot D_{n-1}$.

I wasn't sure how to continue this recursion though. I've got something like:

$2 \cdot (-1)^? \cdot (n-2)!$

I am not sure what I should get as exponent of -1. I've tried a few things but everything that I've got was different from the solution that my tutor gave us. Yet he said that the solution might be incorrect.
Those recursions are just so confusing to me. I would appreciate it if someone could explain me how to determine that exponent.
 
Physics news on Phys.org
karseme said:
I'm a little stuck here. I should determine the following determinant. I first tried to simplify it a little by using elemntary transformations. And then I did Laplace expansion on the last row.

$\begin{vmatrix}2 & 2 & \cdots & 2 & 2 & 1 \\ 2 & 2 & \cdots & 2 & 2 & 2 \\ 2 & 2 & \cdots & 3 & 2 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 2 & n-1 & \cdots & 2 & 2 & 2 \\ n & 2 & \cdots & 2 & 2 & 2\end{vmatrix}=\begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 2 \\ 0 & 0 & \cdots & 1 & 0 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & n-3 & \cdots & 0 & 0 & 2 \\ n-2 & 0 & \cdots & 0 & 0 & 2\end{vmatrix} \\ =(-1)^{n+1} \cdot (n-2) \cdot \begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 2 \\ 0 & 0 & \cdots & 1 & 0 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & n-4 & \cdots & 0 & 0 & 2 \\ n-3 & 0 & \cdots & 0 & 0 & 2\end{vmatrix} + (-1)^{2n} \cdot 2 \cdot \begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & n-3 & \cdots & 0 & 0 & 0\end{vmatrix}$.

The second determinant is equal to 0. And the first determinant is of the same form as the initial, just one degree smaller.
We have recursion here. I used labels:

$D_n=\begin{vmatrix}2 & 2 & \cdots & 2 & 2 & 1 \\ 2 & 2 & \cdots & 2 & 2 & 2 \\ 2 & 2 & \cdots & 3 & 2 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 2 & n-1 & \cdots & 2 & 2 & 2 \\ n & 2 & \cdots & 2 & 2 & 2\end{vmatrix}=\begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 2 \\ 0 & 0 & \cdots & 1 & 0 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & n-3 & \cdots & 0 & 0 & 2 \\ n-2 & 0 & \cdots & 0 & 0 & 2\end{vmatrix}$

I have:

$D_n=(-1)^{n+1} \cdot (n-2) \cdot D_{n-1}$.

I wasn't sure how to continue this recursion though. I've got something like:

$2 \cdot (-1)^? \cdot (n-2)!$

I am not sure what I should get as exponent of -1. I've tried a few things but everything that I've got was different from the solution that my tutor gave us. Yet he said that the solution might be incorrect.
Those recursions are just so confusing to me. I would appreciate it if someone could explain me how to determine that exponent.

I did this by changing the matrix to the one where the anti diagonal becomes the diagonal. The number of swaps needed to do this is n/2 if n is even and (n-1)/2 if n is odd. Each swap contributes -1 so we want the sign to be + when n or n-1 is a multiple of 4 this means the power of -1 is n(n-1)/2. Hope this helps
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top