MHB Determining a determinant using recurrence relations

Click For Summary
The discussion focuses on determining a specific determinant using recurrence relations, with the user initially simplifying the determinant through elementary transformations and Laplace expansion. They establish a recursive relationship, denoting the determinant as D_n and expressing it in terms of D_{n-1}. The user is uncertain about how to proceed with the recursion, particularly regarding the exponent of -1 in their final expression. Another participant contributes by explaining how to determine the sign of the determinant based on the number of swaps needed to rearrange the matrix, indicating that the sign is positive when n or n-1 is a multiple of 4. This clarification aims to assist in resolving the user's confusion about the recursion and sign determination.
karseme
Messages
13
Reaction score
0
I'm a little stuck here. I should determine the following determinant. I first tried to simplify it a little by using elemntary transformations. And then I did Laplace expansion on the last row.

$\begin{vmatrix}2 & 2 & \cdots & 2 & 2 & 1 \\ 2 & 2 & \cdots & 2 & 2 & 2 \\ 2 & 2 & \cdots & 3 & 2 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 2 & n-1 & \cdots & 2 & 2 & 2 \\ n & 2 & \cdots & 2 & 2 & 2\end{vmatrix}=\begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 2 \\ 0 & 0 & \cdots & 1 & 0 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & n-3 & \cdots & 0 & 0 & 2 \\ n-2 & 0 & \cdots & 0 & 0 & 2\end{vmatrix} \\ =(-1)^{n+1} \cdot (n-2) \cdot \begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 2 \\ 0 & 0 & \cdots & 1 & 0 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & n-4 & \cdots & 0 & 0 & 2 \\ n-3 & 0 & \cdots & 0 & 0 & 2\end{vmatrix} + (-1)^{2n} \cdot 2 \cdot \begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & n-3 & \cdots & 0 & 0 & 0\end{vmatrix}$.

The second determinant is equal to 0. And the first determinant is of the same form as the initial, just one degree smaller.
We have recursion here. I used labels:

$D_n=\begin{vmatrix}2 & 2 & \cdots & 2 & 2 & 1 \\ 2 & 2 & \cdots & 2 & 2 & 2 \\ 2 & 2 & \cdots & 3 & 2 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 2 & n-1 & \cdots & 2 & 2 & 2 \\ n & 2 & \cdots & 2 & 2 & 2\end{vmatrix}=\begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 2 \\ 0 & 0 & \cdots & 1 & 0 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & n-3 & \cdots & 0 & 0 & 2 \\ n-2 & 0 & \cdots & 0 & 0 & 2\end{vmatrix}$

I have:

$D_n=(-1)^{n+1} \cdot (n-2) \cdot D_{n-1}$.

I wasn't sure how to continue this recursion though. I've got something like:

$2 \cdot (-1)^? \cdot (n-2)!$

I am not sure what I should get as exponent of -1. I've tried a few things but everything that I've got was different from the solution that my tutor gave us. Yet he said that the solution might be incorrect.
Those recursions are just so confusing to me. I would appreciate it if someone could explain me how to determine that exponent.
 
Physics news on Phys.org
karseme said:
I'm a little stuck here. I should determine the following determinant. I first tried to simplify it a little by using elemntary transformations. And then I did Laplace expansion on the last row.

$\begin{vmatrix}2 & 2 & \cdots & 2 & 2 & 1 \\ 2 & 2 & \cdots & 2 & 2 & 2 \\ 2 & 2 & \cdots & 3 & 2 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 2 & n-1 & \cdots & 2 & 2 & 2 \\ n & 2 & \cdots & 2 & 2 & 2\end{vmatrix}=\begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 2 \\ 0 & 0 & \cdots & 1 & 0 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & n-3 & \cdots & 0 & 0 & 2 \\ n-2 & 0 & \cdots & 0 & 0 & 2\end{vmatrix} \\ =(-1)^{n+1} \cdot (n-2) \cdot \begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 2 \\ 0 & 0 & \cdots & 1 & 0 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & n-4 & \cdots & 0 & 0 & 2 \\ n-3 & 0 & \cdots & 0 & 0 & 2\end{vmatrix} + (-1)^{2n} \cdot 2 \cdot \begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & n-3 & \cdots & 0 & 0 & 0\end{vmatrix}$.

The second determinant is equal to 0. And the first determinant is of the same form as the initial, just one degree smaller.
We have recursion here. I used labels:

$D_n=\begin{vmatrix}2 & 2 & \cdots & 2 & 2 & 1 \\ 2 & 2 & \cdots & 2 & 2 & 2 \\ 2 & 2 & \cdots & 3 & 2 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 2 & n-1 & \cdots & 2 & 2 & 2 \\ n & 2 & \cdots & 2 & 2 & 2\end{vmatrix}=\begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 2 \\ 0 & 0 & \cdots & 1 & 0 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & n-3 & \cdots & 0 & 0 & 2 \\ n-2 & 0 & \cdots & 0 & 0 & 2\end{vmatrix}$

I have:

$D_n=(-1)^{n+1} \cdot (n-2) \cdot D_{n-1}$.

I wasn't sure how to continue this recursion though. I've got something like:

$2 \cdot (-1)^? \cdot (n-2)!$

I am not sure what I should get as exponent of -1. I've tried a few things but everything that I've got was different from the solution that my tutor gave us. Yet he said that the solution might be incorrect.
Those recursions are just so confusing to me. I would appreciate it if someone could explain me how to determine that exponent.

I did this by changing the matrix to the one where the anti diagonal becomes the diagonal. The number of swaps needed to do this is n/2 if n is even and (n-1)/2 if n is odd. Each swap contributes -1 so we want the sign to be + when n or n-1 is a multiple of 4 this means the power of -1 is n(n-1)/2. Hope this helps
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K