MHB Determining a determinant using recurrence relations

karseme
Messages
13
Reaction score
0
I'm a little stuck here. I should determine the following determinant. I first tried to simplify it a little by using elemntary transformations. And then I did Laplace expansion on the last row.

$\begin{vmatrix}2 & 2 & \cdots & 2 & 2 & 1 \\ 2 & 2 & \cdots & 2 & 2 & 2 \\ 2 & 2 & \cdots & 3 & 2 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 2 & n-1 & \cdots & 2 & 2 & 2 \\ n & 2 & \cdots & 2 & 2 & 2\end{vmatrix}=\begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 2 \\ 0 & 0 & \cdots & 1 & 0 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & n-3 & \cdots & 0 & 0 & 2 \\ n-2 & 0 & \cdots & 0 & 0 & 2\end{vmatrix} \\ =(-1)^{n+1} \cdot (n-2) \cdot \begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 2 \\ 0 & 0 & \cdots & 1 & 0 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & n-4 & \cdots & 0 & 0 & 2 \\ n-3 & 0 & \cdots & 0 & 0 & 2\end{vmatrix} + (-1)^{2n} \cdot 2 \cdot \begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & n-3 & \cdots & 0 & 0 & 0\end{vmatrix}$.

The second determinant is equal to 0. And the first determinant is of the same form as the initial, just one degree smaller.
We have recursion here. I used labels:

$D_n=\begin{vmatrix}2 & 2 & \cdots & 2 & 2 & 1 \\ 2 & 2 & \cdots & 2 & 2 & 2 \\ 2 & 2 & \cdots & 3 & 2 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 2 & n-1 & \cdots & 2 & 2 & 2 \\ n & 2 & \cdots & 2 & 2 & 2\end{vmatrix}=\begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 2 \\ 0 & 0 & \cdots & 1 & 0 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & n-3 & \cdots & 0 & 0 & 2 \\ n-2 & 0 & \cdots & 0 & 0 & 2\end{vmatrix}$

I have:

$D_n=(-1)^{n+1} \cdot (n-2) \cdot D_{n-1}$.

I wasn't sure how to continue this recursion though. I've got something like:

$2 \cdot (-1)^? \cdot (n-2)!$

I am not sure what I should get as exponent of -1. I've tried a few things but everything that I've got was different from the solution that my tutor gave us. Yet he said that the solution might be incorrect.
Those recursions are just so confusing to me. I would appreciate it if someone could explain me how to determine that exponent.
 
Physics news on Phys.org
karseme said:
I'm a little stuck here. I should determine the following determinant. I first tried to simplify it a little by using elemntary transformations. And then I did Laplace expansion on the last row.

$\begin{vmatrix}2 & 2 & \cdots & 2 & 2 & 1 \\ 2 & 2 & \cdots & 2 & 2 & 2 \\ 2 & 2 & \cdots & 3 & 2 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 2 & n-1 & \cdots & 2 & 2 & 2 \\ n & 2 & \cdots & 2 & 2 & 2\end{vmatrix}=\begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 2 \\ 0 & 0 & \cdots & 1 & 0 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & n-3 & \cdots & 0 & 0 & 2 \\ n-2 & 0 & \cdots & 0 & 0 & 2\end{vmatrix} \\ =(-1)^{n+1} \cdot (n-2) \cdot \begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 2 \\ 0 & 0 & \cdots & 1 & 0 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & n-4 & \cdots & 0 & 0 & 2 \\ n-3 & 0 & \cdots & 0 & 0 & 2\end{vmatrix} + (-1)^{2n} \cdot 2 \cdot \begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & n-3 & \cdots & 0 & 0 & 0\end{vmatrix}$.

The second determinant is equal to 0. And the first determinant is of the same form as the initial, just one degree smaller.
We have recursion here. I used labels:

$D_n=\begin{vmatrix}2 & 2 & \cdots & 2 & 2 & 1 \\ 2 & 2 & \cdots & 2 & 2 & 2 \\ 2 & 2 & \cdots & 3 & 2 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 2 & n-1 & \cdots & 2 & 2 & 2 \\ n & 2 & \cdots & 2 & 2 & 2\end{vmatrix}=\begin{vmatrix}1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 2 \\ 0 & 0 & \cdots & 1 & 0 & 2 \\ \vdots & \vdots & \quad & \vdots & \vdots & \vdots \\ 0 & n-3 & \cdots & 0 & 0 & 2 \\ n-2 & 0 & \cdots & 0 & 0 & 2\end{vmatrix}$

I have:

$D_n=(-1)^{n+1} \cdot (n-2) \cdot D_{n-1}$.

I wasn't sure how to continue this recursion though. I've got something like:

$2 \cdot (-1)^? \cdot (n-2)!$

I am not sure what I should get as exponent of -1. I've tried a few things but everything that I've got was different from the solution that my tutor gave us. Yet he said that the solution might be incorrect.
Those recursions are just so confusing to me. I would appreciate it if someone could explain me how to determine that exponent.

I did this by changing the matrix to the one where the anti diagonal becomes the diagonal. The number of swaps needed to do this is n/2 if n is even and (n-1)/2 if n is odd. Each swap contributes -1 so we want the sign to be + when n or n-1 is a multiple of 4 this means the power of -1 is n(n-1)/2. Hope this helps
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
34
Views
3K
  • · Replies 52 ·
2
Replies
52
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K