Hello!(adsbygoogle = window.adsbygoogle || []).push({});

I have a value which changes over time, I think I can represent this as f(t). It increases by an amount determined by two other values which also change with t: g(t) and h(t), all multiplied by a constant: A. It decreases by an amount determined by its value at the given time: f(t), multiplied by some constant: B.

So I figured:

[tex]\frac{d}{dt}(f(t)) = A g(t) h(t) - B f(t)[/tex]

So the value of the function at time = t1 is:

[tex]\int_{0}^{t_{1}}\frac{d}{dt}(f(t)) dt = A \int_{0}^{t_{1}} g(t) h(t) dt - B \int_{0}^{t_{1}}f(t) dt[/tex]

This gives f(t1) - f(t), f(t) in this case = 0, and so it gives f(t1).

[tex]f(t1) = A \int_{0}^{t_{1}} g(t) h(t) dt - B \int_{0}^{t_{1}}f(t) dt[/tex]

However, the second component on the RHS says that the integral of f(t) dt from 0 to t1 is required. The value of t at a given time between 0 and t1, say t = a, is given by the equation above, evaluated from 0 to a. Therefore:

[tex]f(t1) = A \int_{0}^{t_{1}} g(t) h(t) dt - B \int_{0}^{t_{1}}(A \int_{0}^{t_{1}} g(t) h(t) dt - B \int_{0}^{t_{1}}f(t) dt) dt[/tex]

Does that even make sense?

I'm stuck! Help!

Thanks in advance!

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Determining a function from deriv, func in integral

Loading...

Similar Threads - Determining function deriv | Date |
---|---|

A Evaluation of functional determinants | Nov 4, 2016 |

I Determining the flux of an arbitrary vector function | Oct 23, 2016 |

I Determining the Rate at Which Functions approach Infinity | Apr 7, 2016 |

How to determine the x values where a function is continuous | Mar 15, 2014 |

Can you determine this function? | Feb 7, 2014 |

**Physics Forums - The Fusion of Science and Community**