1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Determining ω_p for a certain state?

  1. Oct 15, 2013 #1
    1. The problem statement, all variables and given/known data

    "Consider the quantum mechanical harmonic oscillator. Let the energy eigenstates and eigenvalues of this system be given by |ψ_n> and E_n = (n + 1/2)ħω, respectively.

    At t=0, the state of a particle in this potential is given by: |ψ_a> = 1/√2 (|ψ_0> + |ψ_1>)

    Determine ω_p (angular frequency for the probability density of a superposition of two energy eigenstates) for |ψ_a>. How is it related to ω, the frequency of the harmonic oscillator potential?"



    2. Relevant equations
    Only one I can think of is that |ψ_n> ≈ sin(nπx/a), but that's for an infinite square well I think. Other than that I have no idea.


    3. The attempt at a solution
    I really am not sure even where to start with this. I'm guessing that if we were to find the probability density of |ψ_a> we could then somehow get the angular frequency ω_p? I think a big problem is that I'm not sure how we would connect an energy eigenvalue and eigenstate. Also I'm not really sure how the frequency of the harmonic oscillator potential comes into play....
     
  2. jcsd
  3. Oct 15, 2013 #2

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Determining ω_p for a certain state?
Loading...