- #1

nkinar

- 76

- 0

Suppose that I have a function [tex]f(a,b,c,d) = g[/tex], where [tex]{a,b,c,d}[/tex] are four independent variables and [tex]g[/tex] is the dependent variable. Now let's say that I evaluate the function four times, each time using different inputs, and the function produces four different outputs:

[tex]f(a_1,b_1,c_1,d_1) = g_1 [/tex]

[tex]f(a_2,b_2,c_2,d_2) = g_2 [/tex]

[tex]f(a_3,b_3,c_3,d_3) = g_3 [/tex]

[tex]f(a_4,b_4,c_4,d_4) = g_4 [/tex]

Using a system of equations (linear or non-linear), is there a way to determine the values of the inputs [tex]a_1,b_1,c_1,d_1,a_2,b_2,c_2,d_2,a_3,b_3,c_3,d_3,a_4,b_4,c_4,d_4[/tex] if I know the function [tex]f(a,b,c,d)[/tex] and the values of the outputs [tex] g_1,g_2,g_3,g_4 [/tex] for these inputs?

What type of algorithm could I use to determine the values of the inputs? Is there a good reference available?

[tex]f(a_1,b_1,c_1,d_1) = g_1 [/tex]

[tex]f(a_2,b_2,c_2,d_2) = g_2 [/tex]

[tex]f(a_3,b_3,c_3,d_3) = g_3 [/tex]

[tex]f(a_4,b_4,c_4,d_4) = g_4 [/tex]

Using a system of equations (linear or non-linear), is there a way to determine the values of the inputs [tex]a_1,b_1,c_1,d_1,a_2,b_2,c_2,d_2,a_3,b_3,c_3,d_3,a_4,b_4,c_4,d_4[/tex] if I know the function [tex]f(a,b,c,d)[/tex] and the values of the outputs [tex] g_1,g_2,g_3,g_4 [/tex] for these inputs?

What type of algorithm could I use to determine the values of the inputs? Is there a good reference available?

Last edited: