Determining the uncertainity in Geiger Counter data

Click For Summary
SUMMARY

The discussion centers on determining uncertainty in Geiger Counter data using Poisson statistics. Participants confirm that the uncertainty can be calculated as the square root of the counts, which results in small error bars when counts are high, ranging from 20,000 to 100,000. Despite the small size of the uncertainty, using Poisson to estimate error bars is deemed reasonable, especially given the single trial nature of the experiment. The consensus is that while the uncertainty may appear insignificant, it is mathematically valid.

PREREQUISITES
  • Understanding of Poisson distribution and its properties
  • Familiarity with statistical error analysis
  • Basic knowledge of Geiger Counter operation and data collection
  • Ability to perform square root calculations for uncertainty estimation
NEXT STEPS
  • Research advanced statistical methods for estimating uncertainty in single-trial experiments
  • Learn about alternative distributions for modeling count data beyond Poisson
  • Explore techniques for visualizing error bars in data presentations
  • Investigate the implications of high count data on statistical significance
USEFUL FOR

Researchers, physicists, and data analysts working with Geiger Counter data or similar count-based measurements, particularly those interested in statistical methods for uncertainty estimation.

learningastronomy
Messages
15
Reaction score
3
Homework Statement
I have a list of counts that are taken from a Geiger Counter based off only one trial. There were 20 runs taken with different voltages. The voltage ranged from 500 to 1000 and the counts ranged from 20,000 to 100,000.
Relevant Equations
Let c be counts therefore uncertainty is ##\sqrt{c}##.
From what I understand thus far is the counting involves Poisson therefore the uncertainty is just the square root of the counts, correct? But when I take the square root of the counts it produces a very small number compared to the count which makes it insignificant therefore the error bars that I want to produce aren't visible because the uncertainty is so small. Am I correct in using Poisson to measure the uncertainty? There was only one trial done.
 
Physics news on Phys.org
learningastronomy said:
Homework Statement:: I have a list of counts that are taken from a Geiger Counter based off only one trial. There were 20 runs taken with different voltages. The voltage ranged from 500 to 1000 and the counts ranged from 20,000 to 100,000.
Relevant Equations:: Let c be counts therefore uncertainty is ##\sqrt{c}##.

From what I understand thus far is the counting involves Poisson therefore the uncertainty is just the square root of the counts, correct? But when I take the square root of the counts it produces a very small number compared to the count which makes it insignificant therefore the error bars that I want to produce aren't visible because the uncertainty is so small. Am I correct in using Poisson to measure the uncertainty? There was only one trial done.
The description is not clear to me.

Is it that, on the basis that the process is Poisson, you want the uncertainty in the Poisson rate as deduced from a single count? My understanding is that if you estimate the parameter from a single Poisson count the standard error in that estimate is indeed the square root of the count. Yes, with such large counts this will be a relatively small number.
 
Last edited:
haruspex said:
The description is not clear to me.

Is it that, on the basis that the process is Poisson, you want the uncertainty in the Poisson rate as deduced from a single count? My understanding is that if you estimate the parameter from a single Poisson count the standard error in that estimate is indeed the square root of the count. Yes, with such large counts this will be a relatively small number.

The process does not have to be Poisson, I just assumed to use Poisson to compute the uncertainty. If there was only one trial in the experiment how do I solve for the uncertainty/error bars? Will Poisson suffice even though the uncertainty is so small it becomes insignificant?
 
learningastronomy said:
The process does not have to be Poisson, I just assumed to use Poisson to compute the uncertainty. If there was only one trial in the experiment how do I solve for the uncertainty/error bars? Will Poisson suffice even though the uncertainty is so small it becomes insignificant?
To get an answer you have to make an assumption about the nature of the distribution, and Poisson seems entirely reasonable.
I see no objection to what you have done. The error bars will really be that small.
 
  • Like
Likes learningastronomy
haruspex said:
To get an answer you have to make an assumption about the nature of the distribution, and Poisson seems entirely reasonable.
I see no objection to what you have done. The error bars will really be that small.
Oh I see, thank you!
 

Similar threads

Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
12K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
6K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K