MHB Determining Value of a in Matrix A with $\lambda$ = 0

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Matrix Value
Click For Summary
The discussion focuses on determining the value of 'a' in the matrix A, given that λ = 0 is an eigenvalue. The characteristic polynomial was initially calculated incorrectly, but corrections revealed that it should be -6, leading to the conclusion that a = 3. Participants noted that the trace of the matrix, which is the sum of the eigenvalues, could also help find the second eigenvalue. Ultimately, the correct value of 'a' is confirmed to be 3. The conversation emphasizes the importance of accurate calculations in finding eigenvalues.
Yankel
Messages
390
Reaction score
0
Hello all,

Given the following matrix,

\[A=\begin{pmatrix} 2 & 6\\ 1 & a \end{pmatrix}\]

and given that

\[\lambda =0\]

is an eigenvalue of A, I am trying to determine that value of a.

What I did, is to create the characteristic polynomial

\[(\lambda -2)*(\lambda -a)+6=0\]

and given

\[\lambda =0\]

I got that a is -3.

Somehow I am not sure. Is there a way of finding the second eigenvalue before calculating a ?

Thank you !
 
Physics news on Phys.org
You could use that the determinant is the product of the eigenvalues.
(Also, the trace is the sum of the eigenvalues, but in this case you do not need that to determine $a$. You could use it to determine the second eigenvalue, though.)
 
Last edited:
Yankel said:
Hello all,

Given the following matrix,

\[A=\begin{pmatrix} 2 & 6\\ 1 & a \end{pmatrix}\]

and given that

\[\lambda =0\]

is an eigenvalue of A, I am trying to determine that value of a.

What I did, is to create the characteristic polynomial

\[(\lambda -2)*(\lambda -a)+6=0\]

and given

\[\lambda =0\]

I got that a is -3.

Somehow I am not sure. Is there a way of finding the second eigenvalue before calculating a ?

Thank you !
Check the signs in that calculation! I think that it should be $-6$ in the characteristic polynomial.
 
Opalg, you are correct, it is -6 and therefore a=3. Am I correct ?
 
Yankel said:
Somehow I am not sure. Is there a way of finding the second eigenvalue before calculating a ?

As Krylov pointed out, the trace is the sum of the eigenvalues.
So if one eigenvalue is 0, then the other is $\operatorname{Tr}A=2+a$.

And yes, a=3 is the correct solution.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
8
Views
2K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K