Diagonalization and Unitary Matrices

In summary: Thank you for catching that!In summary, Maple incorrectly assumed that the number in the question is 1.
  • #1
Dewgale
98
9
\

Homework Statement


Let B = ##
\left[ \begin{array}{ccc} -1 & i & 1 \\ -i & 0 & 0 \\ 1 & 0 & 0 \end{array} \right]
##. Find a Unitary transformation to diagonalize B.

Homework Equations


N/A

The Attempt at a Solution


I have found both the Eigenvalues (0, 2, -1) and the Eigenvectors, which are ##<0,i,1>,\ \ <2,-i,1>,## and ##<-1,-i,1>##. Vectors 1 and 3 are both already normalized, but I normalized vector two to be ##<1,\frac{-i}{2},\frac{1}{2}>##.

They are now orthonormal, but the matrix formed from them,

$$U =
\left[ \begin{array}{ccc} 0 & 1 & -1\\ i & \frac{-i}{2} & -i \\ 1 & \frac{1}{2} & 1 \end{array} \right]$$

is not a unitary matrix. It will still succesfully diagonalize B, but I don't know what I've done wrong. Thank you!
 
Physics news on Phys.org
  • #2
Dewgale said:
\

Homework Statement


Let B = ##
\left[ \begin{array}{ccc} -1 & i & 1 \\ -i & 0 & 0 \\ 1 & 0 & 0 \end{array} \right]
##. Find a Unitary transformation to diagonalize B.

Homework Equations


N/A

The Attempt at a Solution


I have found both the Eigenvalues (0, 2, -1) and the Eigenvectors, which are ##<0,i,1>,\ \ <2,-i,1>,## and ##<-1,-i,1>##. Vectors 1 and 3 are both already normalized, but I normalized vector two to be ##<1,\frac{-i}{2},\frac{1}{2}>##.
The first and third eigenvectors aren't normalized, nor is the last one you show. For example, the magnitude of the first vector is ##\sqrt{2}##. The magnitude of a normalized vector is 1.
Dewgale said:
They are now orthonormal, but the matrix formed from them,

$$U =
\left[ \begin{array}{ccc} 0 & 1 & -1\\ i & \frac{-i}{2} & -i \\ 1 & \frac{1}{2} & 1 \end{array} \right]$$

is not a unitary matrix. It will still succesfully diagonalize B, but I don't know what I've done wrong. Thank you!
 
  • #3
Mark44 said:
The first and third eigenvectors aren't normalized, nor is the last one you show. For example, the magnitude of the first vector is ##\sqrt{2}##. The magnitude of a normalized vector is 1.
Oh shoot, yeah. My "norm" function in maple was spitting out ones, but I realized that I was using the wrong one.

It looks like two out of my three vectors are fine and normalized (## V_1 = <-1, -i, 1>, V_2 = <1, \frac{-i}{2}. \frac{1}{2}>##), but the third one, ##V_3 = < 0, -i, 1> ## has a magnitude of zero, so I don't know how to normalize it... I'm not sure where to go from here.
 
  • #4
Dewgale said:
Oh shoot, yeah. My "norm" function in maple was spitting out ones, but I realized that I was using the wrong one.

It looks like two out of my three vectors are fine and normalized (## V_1 = <-1, -i, 1>, V_2 = <1, \frac{-i}{2}. \frac{1}{2}>##),
No, they are not normalized. For a complex vector v, ##||v|| = \sqrt{v \cdot \bar{v}}##. ##||v_1|| = \sqrt{3}##, so it's clearly not normalized.
Dewgale said:
but the third one, ##V_3 = < 0, -i, 1> ## has a magnitude of zero
No. The only vector with a magnitude of zero is the zero vector. If Maple is giving you the wrong values, do them by hand.
Dewgale said:
, so I don't know how to normalize it... I'm not sure where to go from here.
 
  • #5
Dewgale said:
I have found the Eigenvalues (0, 2, -1) !
Are you sure 2 and -1 are eigenvalues?
 
  • #6
ehild said:
Are you sure 2 and -1 are eigenvalues?
That's a very good question.
 
  • #7
ehild said:
Are you sure 2 and -1 are eigenvalues?
Yep, about that I'm certain.

$$(Q - \lambda I) =
\left[ \begin{array}{ccc} 1-\lambda & i & 1\\ -i & -\lambda & 0 \\ 1 & 0 & -\lambda \end{array} \right]$$
Therefore ##det(Q - \lambda I) = 0## is
$$(1-\lambda)(-\lambda)(-\lambda) + \lambda + \lambda = 0$$
which is simplified to
$$ \lambda(\lambda - 2)(\lambda + 1) = 0$$
Therefore, ##\lambda = 0, 2, -1##.
 
  • #8
Mark44, thank you so much for your help! I'd forgotten that when finding the norm of a complex vector, you need the conjugate. I'm getting the right answer now.

Thank you!
 
  • #9
Dewgale said:
Yep, about that I'm certain.

$$(Q - \lambda I) =
\left[ \begin{array}{ccc} 1-\lambda & i & 1\\ -i & -\lambda & 0 \\ 1 & 0 & -\lambda \end{array} \right]$$
Therefore ##det(Q - \lambda I) = 0## is
$$(1-\lambda)(-\lambda)(-\lambda) + \lambda + \lambda = 0$$
which is simplified to
$$ \lambda(\lambda - 2)(\lambda + 1) = 0$$
Therefore, ##\lambda = 0, 2, -1##.
In your matrix, the term in column 1, row 1 is -1, not 1 as you assume here.
 
  • #10
Oh wow. That's a typo in my original post, the number in the question is 1.
 
  • #11
Mark44 said:
No, they are not normalized. For a complex vector v, ##||v|| = \sqrt{v \cdot \bar{v}}##. ##||v_1|| = \sqrt{3}##, so it's clearly not normalized.
No. The only vector with a magnitude of zero is the zero vector. If Maple is giving you the wrong values, do them by hand.

Maple gives the correct answer if the command is used correctly.
 

Similar threads

Replies
2
Views
624
Replies
2
Views
800
Replies
5
Views
1K
Replies
4
Views
696
Replies
9
Views
972
Replies
7
Views
2K
Replies
7
Views
3K
Back
Top