- #1
Thadis
- 44
- 0
Homework Statement
Compute the inverse, eigenvalues and eigenvectors of the following matrix, M.
Are the eigenvectors orthogonal? Determine a unitary similarity transformation
matrix U such that U-1MU is diagonal.With M being
{2, 0, 2i, 0, 1}
{0, -1, 0,-2i,0}
{-2i, 0, 1, 1, 1}
{ 0, 2i, 1, 0,1}
{1, 0, 1, -1,-1}
Homework Equations
I know for that you are able to diagonalize real matrices by creating a matrix of the eigenvectors.
The Attempt at a Solution
I have tried solving this problem using Mathmatica by creating a matrix from the eigenvectors then inversing that matrix and using the U-1MU identity to see if I get a diagonal matrix but I end up not getting a diagonal matrix. I also have tried orthogonalizing the eigenvector matrix to see if that was a problem but it did not seem to work. Does anyone have anything that might help me understand how to do this problem and also the logic behide the steps? Thank you!