Did I Calculate the Length of the Parametric Curve Correctly?

Click For Summary

Discussion Overview

The discussion revolves around the calculation of the length of a parametric curve defined by the equations \(x=3t^2\) and \(y=2t^3\) for \(0 \le t \le 3\). Participants explore the integration process involved in determining the length, including the use of substitutions and simplifications.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Homework-related

Main Points Raised

  • One participant presents an initial calculation for the length \(L\) using the formula for arc length, but makes an error in the evaluation of \(6^2\).
  • Another participant corrects the error, suggesting that the integral should be expressed as \(L = 6 \int_0^3 t\sqrt{1+t^2}\, dt\) and recommends a substitution \(u = 1 + t^2\) for simplification.
  • Subsequent posts reiterate the integral setup and substitution, with participants discussing the simplification of the expression and the limits of integration.
  • There is a suggestion to change the limits of integration according to the substitution, indicating a potential oversight in the earlier calculations.

Areas of Agreement / Disagreement

Participants generally agree on the need for substitution and simplification in the calculation, but there are differing opinions on how to best express the integral and manage the limits of integration. The discussion remains unresolved regarding the final form of the integral and the correctness of the limits after substitution.

Contextual Notes

There are unresolved aspects regarding the handling of limits during substitution and the simplification of common factors in the integral, which may affect the clarity of the final result.

ineedhelpnow
Messages
649
Reaction score
0
#1 find the length of the curve $x=3t^2$, $y=2t^3$, $0\le t \le 3$

$L=\int_{\alpha}^{\beta} \ \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt$$\frac{dx}{dt}=6t$

$\frac{dy}{dt}=6t^2$$L=\int_{0}^{3} \ \sqrt{(6t)^2+(6t^2)^2}dt$
$=\int_{0}^{3} \ \sqrt{6t^2+6t^4}dt$
$=\int_{0}^{3} \ \sqrt{6t^2(1+t^2)}dt$
$=\int_{0}^{3} \ \sqrt{6t^2}dt + \int_{0}^{3} \ \sqrt{1+t^2}dt$$=(\frac{\sqrt{6}*t^2}{2})^3_0 + (\frac{\ln\left({\sqrt{t^2+1}+t}\right)}{2}+\frac{t\sqrt{t^2+1}}{2})^3_0$

did i do it right?
 
Physics news on Phys.org
No. In the second line of the calculation of $L$ -- $6^2 = 36$, not 6. So you should have

$L = \int_0^3 6\sqrt{t^2 (1 + t^2)} = 6 \int_0^3 t\sqrt{1+t^2}\, dt$.

Then you can use the u-sub $u = 1 + t^2$ to finish the rest.
 
Last edited:
oh that makes it way more simpler. thanks
 
$6 \int_{0}^{3} \ t\sqrt{1+t^2}dt$

$u=1+t^2$

$du=2t dt$

$dt=\frac{1}{2} du$$6 \int_{0}^{3} \ \frac{t\sqrt{u}}{2t}du$

$3 \int_{0}^{3} \ \sqrt{u}}du$

$3[\frac{2u^{3/2}}{3}]^3_0$

$3[\frac{2(1+t^2)^{3/2}}{3}]^3_0$

is that right?
 
ineedhelpnow said:
$6 \int_{0}^{3} \ t\sqrt{1+t^2}dt$

$u=1+t^2$

$du=2t dt$

$dt=\frac{1}{2} du$$6 \int_{0}^{3} \ \frac{t\sqrt{u}}{2t}du$

$3 \int_{0}^{3} \ \sqrt{u}}du$

$3[\frac{2u^{3/2}}{3}]^3_0$

$3[\frac{2(1+t^2)^{3/2}}{3}]^3_0$

is that right?

Yes, although there's no reason to keep those common factors there to make the calculation more difficult, write it as $\displaystyle \begin{align*} 2 \left[ \left( 1 + t^2 \right) ^{\frac{3}{2}} \right] _0^3 \end{align*}$...
 
ineedhelpnow said:
$6 \int_{0}^{3} \ t\sqrt{1+t^2}dt$

$u=1+t^2$

$du=2t dt$

$dt=\frac{1}{2} du$$6 \int_{0}^{3} \ \frac{t\sqrt{u}}{2t}du$

$3 \int_{0}^{3} \ \sqrt{u}}du$

$3[\frac{2u^{3/2}}{3}]^3_0$

$3[\frac{2(1+t^2)^{3/2}}{3}]^3_0$

is that right?

I would change the limits too in accordance with the substitution, and then be done with $t$ altogether. :D
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
5K