Did I Calculate the Length of the Parametric Curve Correctly?

Click For Summary
SUMMARY

The discussion focuses on calculating the length of the parametric curve defined by the equations \(x=3t^2\) and \(y=2t^3\) over the interval \(0 \leq t \leq 3\). The correct formula for the length \(L\) is derived using the integral \(L = \int_0^3 6\sqrt{t^2(1+t^2)} \, dt\). A substitution \(u = 1 + t^2\) simplifies the integral, leading to the final expression \(3 \left[\frac{2u^{3/2}}{3}\right]_0^3\). The discussion emphasizes the importance of correctly applying calculus techniques and substitution methods in solving parametric equations.

PREREQUISITES
  • Understanding of parametric equations
  • Knowledge of calculus, specifically integration techniques
  • Familiarity with substitution methods in integrals
  • Ability to manipulate algebraic expressions
NEXT STEPS
  • Study the application of parametric equations in calculus
  • Learn advanced integration techniques, including u-substitution
  • Explore the geometric interpretation of parametric curves
  • Practice solving similar problems involving parametric length calculations
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus and parametric equations, as well as anyone looking to strengthen their integration skills.

ineedhelpnow
Messages
649
Reaction score
0
#1 find the length of the curve $x=3t^2$, $y=2t^3$, $0\le t \le 3$

$L=\int_{\alpha}^{\beta} \ \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt$$\frac{dx}{dt}=6t$

$\frac{dy}{dt}=6t^2$$L=\int_{0}^{3} \ \sqrt{(6t)^2+(6t^2)^2}dt$
$=\int_{0}^{3} \ \sqrt{6t^2+6t^4}dt$
$=\int_{0}^{3} \ \sqrt{6t^2(1+t^2)}dt$
$=\int_{0}^{3} \ \sqrt{6t^2}dt + \int_{0}^{3} \ \sqrt{1+t^2}dt$$=(\frac{\sqrt{6}*t^2}{2})^3_0 + (\frac{\ln\left({\sqrt{t^2+1}+t}\right)}{2}+\frac{t\sqrt{t^2+1}}{2})^3_0$

did i do it right?
 
Physics news on Phys.org
No. In the second line of the calculation of $L$ -- $6^2 = 36$, not 6. So you should have

$L = \int_0^3 6\sqrt{t^2 (1 + t^2)} = 6 \int_0^3 t\sqrt{1+t^2}\, dt$.

Then you can use the u-sub $u = 1 + t^2$ to finish the rest.
 
Last edited:
oh that makes it way more simpler. thanks
 
$6 \int_{0}^{3} \ t\sqrt{1+t^2}dt$

$u=1+t^2$

$du=2t dt$

$dt=\frac{1}{2} du$$6 \int_{0}^{3} \ \frac{t\sqrt{u}}{2t}du$

$3 \int_{0}^{3} \ \sqrt{u}}du$

$3[\frac{2u^{3/2}}{3}]^3_0$

$3[\frac{2(1+t^2)^{3/2}}{3}]^3_0$

is that right?
 
ineedhelpnow said:
$6 \int_{0}^{3} \ t\sqrt{1+t^2}dt$

$u=1+t^2$

$du=2t dt$

$dt=\frac{1}{2} du$$6 \int_{0}^{3} \ \frac{t\sqrt{u}}{2t}du$

$3 \int_{0}^{3} \ \sqrt{u}}du$

$3[\frac{2u^{3/2}}{3}]^3_0$

$3[\frac{2(1+t^2)^{3/2}}{3}]^3_0$

is that right?

Yes, although there's no reason to keep those common factors there to make the calculation more difficult, write it as $\displaystyle \begin{align*} 2 \left[ \left( 1 + t^2 \right) ^{\frac{3}{2}} \right] _0^3 \end{align*}$...
 
ineedhelpnow said:
$6 \int_{0}^{3} \ t\sqrt{1+t^2}dt$

$u=1+t^2$

$du=2t dt$

$dt=\frac{1}{2} du$$6 \int_{0}^{3} \ \frac{t\sqrt{u}}{2t}du$

$3 \int_{0}^{3} \ \sqrt{u}}du$

$3[\frac{2u^{3/2}}{3}]^3_0$

$3[\frac{2(1+t^2)^{3/2}}{3}]^3_0$

is that right?

I would change the limits too in accordance with the substitution, and then be done with $t$ altogether. :D
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K