Difference between distance from two fixed points is a positive constant

Click For Summary

Discussion Overview

The discussion revolves around the geometric locus of points in a plane where the difference of their distances from two fixed points is a positive constant. Participants explore the implications of this condition in relation to conic sections, particularly focusing on whether the resulting shape is a hyperbola, ellipse, or another conic type.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • Some participants propose that the shape defined by the condition is a hyperbola, as it is characterized by the difference of distances from two foci being constant.
  • Others argue that the method of deriving the conic section could lead to an ellipse, as one participant claims to have obtained an ellipse through their calculations.
  • A participant questions whether the two fixed points should be considered the foci and discusses the implications of how the difference is calculated.
  • Several participants provide mathematical derivations to support their claims, but there is uncertainty regarding the conditions under which the derived equations hold true.
  • There is a discussion about the definitions of various conic sections, including circles, ellipses, parabolas, and hyperbolas, with participants clarifying their characteristics.

Areas of Agreement / Disagreement

Participants do not reach a consensus on whether the locus is a hyperbola or an ellipse, with multiple competing views remaining throughout the discussion.

Contextual Notes

There are unresolved mathematical steps and assumptions regarding the distances involved and the specific conditions under which the derived equations apply. The dependence on the definitions of the conic sections is also noted.

Dustinsfl
Messages
2,217
Reaction score
5
The set of all points \(P(x,y)\) in a plane, such that the difference of their distance from two fixed points is a positive constant is called?

ellipse
hyperbola
parabola
circle

How do I work this out? Are the two fixed points supposed to be the foci? Wouldn't this also depend on the how one performs the difference? For instance, take a circle of radius a. Then \(-a - a = -2a\) which is negative.
 
Mathematics news on Phys.org
We can simplify by setting up an appropriate coordinate system. We are given two points to be the foci so set up a coordinate system with the x-axis through those points. We are also free to set the y-axis half way between the two foci so that they are at (-a, 0) and (a, 0).

Let (x, y) be a point on the graph. What is the distance from (x, y) to (-a, 0)? What is the distance from (x, y) to (a, 0)? Since you are told that "the difference of their distance from two fixed points is a positive constant" subtract those and set them equal to some constant, R, say. Now simplify, by getting rid of the square roots, until you can identify the type of equation.
 
I think it's an hyperbola.

Circle: locus of points equidistant from a single point (center).

Ellipse: locus of points such that the sum of the distances from the two foci is a constant.

Parabola: locus of points equidistant from a point (vertex) and a line (directrix).

Hyperbola: locus of points such that the difference of the distances from the two foci is a constant.
 
Ackbach said:
I think it's an hyperbola.

Circle: locus of points equidistant from a single point (center).

Ellipse: locus of points such that the sum of the distances from the two foci is a constant.

Parabola: locus of points equidistant from a point (vertex) and a line (directrix).

Hyperbola: locus of points such that the difference of the distances from the two foci is a constant.

HallsofIvy never specified a conic just a method to find the conic. Do you agree with that approach? I only ask because when I went through it, I did obtain an ellipse.
 
dwsmith said:
HallsofIvy never specified a conic just a method to find the conic. Do you agree with that approach? I only ask because when I went through it, I did obtain an ellipse.

HoI's approach should work just fine - I think the result should be an hyperbola. Can you show your working?
 
Ackbach said:
HoI's approach should work just fine - I think the result should be an hyperbola. Can you show your working?

\begin{align}
\sqrt{(x+a)^2 + y^2} - \sqrt{(x-a)^2 + y^2} &= R\\
\sqrt{(x+a)^2 + y^2} &= R + \sqrt{(x-a)^2 + y^2}\\
x^2 + 2ax + a^2 + y^2 &= R^2 + 2R\sqrt{(x-a)^2 + y^2} + x^2 - 2ax + a^2 + y^2\\
ax - \left(\frac{R}{2}\right)^2 &= \frac{R}{2}\sqrt{(x-a)^2 + y^2}\\
a^2x^2 - 2ax\left(\frac{R}{2}\right) + \left(\frac{R}{2}\right)^4 &= \left(\frac{R}{2}\right)^2x^2 - 2ax\left(\frac{R}{2}\right)^2 + a^2\left(\frac{R}{2}\right)^2 + y^2\left(\frac{R}{2}\right)^2\\
\left(\frac{R}{2}\right)^2 \left(\left(\frac{R}{2}\right)^2 - a^2\right) &= \left(\left(\frac{R}{2}\right)^2 - a^2\right)x^2 + \left(\frac{R}{2}\right)^2y^2
\end{align}
By Pythagoras, \(a^2 + v^2 = z^2\). Let \(z = \frac{R}{2}\).
Then
\[
z^2v^2 = v^2x^2 + z^2y^2\Rightarrow 1 = \frac{x^2}{z^2} + \frac{y^2}{v^2}.
\]
 
Last edited:
dwsmith said:
\begin{align}
\sqrt{(x+a)^2 + y^2} - \sqrt{(x-a)^2 + y^2} &= R\\
\sqrt{(x+a)^2 + y^2} &= R + \sqrt{(x-a)^2 + y^2}\\
x^2 + 2ax + a^2 + y^2 &= R^2 + 2R\sqrt{(x-a)^2 + y^2} + x^2 - 2ax + a^2 + y^2\\
ax - \left(\frac{R}{2}\right)^2 &= \frac{R}{2}\sqrt{(x-a)^2 + y^2}\\
a^2x^2 - 2ax\left(\frac{R}{2}\right) + \left(\frac{R}{2}\right)^4 &= \left(\frac{R}{2}\right)^2x^2 - 2ax\left(\frac{R}{2}\right)^2 + a^2\left(\frac{R}{2}\right)^2 + y^2\left(\frac{R}{2}\right)^2\\
\left(\frac{R}{2}\right)^2 \left(\left(\frac{R}{2}\right)^2 - a^2\right) &= \left(\left(\frac{R}{2}\right)^2 - a^2\right)x^2 + \left(\frac{R}{2}\right)^2y^2
\end{align}

I'm good up to here. I'm not at all sure, though, that $R/2-a>0$. The distance between the two foci is $2a$. Take a point on the line between the two foci that satisfies the requirement. Suppose the distance from one focus is $g$, and the distance from the other focus is $h$, with $h>g$. Then $h-g=R$, as we know the definition of your shape to be. But it is also true that $h+g=2a$, since the point we've picked is on the line between the two foci. That is,
\begin{align*}
h-g&=R \\
h+g&=2a.
\end{align*}
Subtracting the second equation from the first yields $R-2a=-2g<0$, since $g>0$. It follows that $R/2<a$, and hence $R^2/4<a^2$. Therefore,
$$\left(\frac{R}{2}\right)^2 \left(\left(\frac{R}{2}\right)^2 - a^2\right) = \left(\left(\frac{R}{2}\right)^2 - a^2\right)x^2 + \left(\frac{R}{2}\right)^2y^2 $$
describes an hyperbola.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K