Alex Schaller said:
Maybe we should send a suggestion to the editor of Hayt's textbook to look it over?
Looking at it from another angle, this matter is actually not a big deal. When we express the same thing, we will use different units. For example, the unit of weight can be mg, kg or pound, etc., and the unit of distance can be meter, kilometer or light-year, etc., so just indicate the unit to avoid misunderstanding.
The unit of electric flux based on ## ~ \Phi_e = E S~cos\phi~ ## is volt meters (Vm).
Because the unit of ## ~\epsilon~## is ## \frac {C} {Vm} ~##, the unit of electric flux based on ## ~ \Phi_e =DS~cos\phi = ~\epsilon~E S~cos\phi~ ## is ## \left(\frac {C} {Vm} \right) \left( Vm \right) = C~##. That's why I mentioned earlier that I prefer the expression ##~\Phi_e =Q ~##, which seems to be more concise and beautiful in my opinion.
On the other hand, this is also in line with symmetry.
## ~ \Phi_e = D S~cos\phi~ ##, where D is called the electric flux density
## ~ \Phi_m = B S~cos\phi~ ##, where B is called the magnetic flux density